Проектирование ракетного двигателя первой ступени двухступенчатой баллистической ракеты

Рефераты по авиации и космонавтике » Проектирование ракетного двигателя первой ступени двухступенчатой баллистической ракеты

Омский государственный технический университет

Кафедра «Авиа- и ракетостроение»

Специальность 160302 – Ракетные двигатели

Курсовая работа

по дисциплине «Теория расчет и проектирование РД»

Проектирование твердотопливного ракетного двигателя первой ступени двухступенчатой баллистической ракеты

Омск 2006


Аннотация

 

В данном курсовом проекте разработана двигательная установка одноступенчатой баллистической ракеты дальнего действия с основными параметрами:

-  Дальность полета = 5500 км;

-  Масса ступени = 34291 кг;

-  Масса ГЧ = 1900 кг;

-  Тяга ступени = 710 кН;

-  Время работы ДУ = 137 c;

-  Диаметр ракеты = 1.9 м;

-  Длина ракеты = 15.32 м;

-  Топливо О+ НДМГ.

Курсовой проект состоит из пояснительной записки и графической части.

В данной пояснительной записке приведены проектировочные тепловые газодинамические массовые и оценочные расчеты.

Записка состоит из 59 листов содержит 26 рисунков и 7 таблиц. Также к записке прилагается задание на курсовой проект. Библиографический список содержит 14 публикаций.

Графическая часть выполнена на трех листах формата А1.


Содержание

Введение

Выбор основных параметров двигательной установки

Выбор прототипа

Выбор количества камер сгорания

Выбор схемы ракетного двигателя и системы подачи топлива

Управление вектором тяги

Схема крепления двигательной установки на ракете

Размещение турбонасосного агрегата на двигательной установке

Регулирование тяги двигательной установки по величине

Характеристика топлива Выбор давления в камере сгорания и на срезе сопла

Системы зажигания жидкостных ракетных двигателей

Компоновочная схема ракеты в первом приближении

1.  Тепловой расчет Описание конструкции КС по прототипу двигателя РД – 119

2.  Определение потребного объема КС

3.  Расчет продольных размеров КС двигателя

4.  Профилирование сопла

4.1 Профилирование входа в сопло с прямолинейным участком

4.2 Профилирование параболического сопла графическим методом

5.  Описание конструкции насоса окислителя по прототипу насоса двигателя РД

6.  Расчет центробежного насоса ЖРД

6.1 Основные параметры насоса

6.2 Размеры и параметры входа на колесо

6.3 Размеры и параметры выхода из колеса

6.4 Расчет центробежного насоса на кавитацию

6.5 Профилирование элементов конструкции насоса

6.5.1 Профилирование колеса в меридиональном сечении

6.5.2 Профилирование лопаток колеса

6.5.3 Профилирование подвода насоса

6.5.4 Профилирование отвода насоса

7.  Расчет импеллерного уплотнения вала

8.  Описание конструкции турбины по прототипу турбины двигателя РД – 219

9.  Расчет турбины ЖРД

9.1 Определение потребного расхода газа через турбину

Заключение

Список используемой литературы

Приложение 1. Расчет траектории управляемой БР

Приложение 2. Расчет коэффициента избытка окислителя.


Введение

Толчком к развитию ракетной техники явилось открытие дымных порохов состоящих из калийной селитры серы и угля.

Массовое применение РДТТ в военной технике началось несколько ранее чем применение ДУ на жидком топливе. И в настоящее время в военной технике главенствующее место занимают РДТТ а в космической технике РДТТ успешно конкурируют с ЖРД. Такая тенденция обусловлена рядом факторов присущих твердотопливным ДУ.

Безусловно одним из главных достоинств РДТТ следует считать относительную простоту устройства. Действительно ведь самые первые РДТТ имели примитивную конструкцию легко реализуемую даже на технологическом уровне средневековья.

Сравнение с ЖРД позволяет отметить такие преимущества конструкции РДТТ:

1.  высокая надежность т.к. из-за отсутствия топливных баков системы подачи;

2.  незначительное время для подготовки ракеты к пуску из-за отсутствия заправки;

3.  высокая компактность ДУ и меньшие габариты;

4.  отсутствуют узлы транспортировки компонентов топлива из баков в камеру сгорания (трубопроводы пневмо- и гидроклапаны);

5.  отсутствуют элементы для принудительной подачи топлива в камеру (элементы вытеснительной системы турбонасосные агрегаты форсунки и т.д.);

6.  невелико (а в ряде конструкций и вовсе отсутствует) число подвижных узлов;

7.  нетоксичность твердого топлива в эксплуатации.

Относительная простота устройства РДТТ влечет за собой и облегчение вопросов связанных с эксплуатацией ракет и пусковых установок в которых используется РДТТ. Действительно в связи с небольшим числом узлов в РДТТ требуется небольшой объем трудозатрат на проведение регламентных работ по проверке работоспособностей двигателей в период хранения и при подготовке к старту.

Особенно привлекательной для военной техники является высокая готовность оружия с РДТТ к использованию.

Важным качеством работы РДТТ является их высокая надежность. По отдельным статистическим сведениям после истечения гарантийного срока хранения ДУ вероятность их безотказного срабатывания составляет более 98%. В гарантийный период работа РДТТ выше 99%.

Среди других факторов в которых проявляются преимущества РДТТ по сравнению с ДУ на жидком топливе необходимо отметить следующие:

·  в большинстве случаев при решении одной и той же тактической или стратегической задачи стоимость ракетного комплекса с РДТТ существенно ниже стоимости комплекса с ЖРД;

·  массовые характеристики современных РДТТ в том числе и коэффициент их массового совершенства превосходят аналогичные показатели для ЖРД.

Однако достоинств РДТТ недостаточно для того чтобы сделать эти ДУ единственно приемлемыми и самыми рациональными как в народном хозяйстве так и в военной технике. Как и любой технический объект РДТТ имеют определенные недостатки что заставляет одновременно развивать ДУ и других классов. Следует отметить следующие недостатки РДТТ:

1.  относительно невысокие значения удельного импульса ДУ на твердом топливе;

2.  сложность регулирования тяги РДТТ по величине и по направлению;

3.  трудность повторного запуска РДТТ;

4.  технологические трудности изготовления топливных зарядов больших масс и габаритов;

5.  высокая чувствительность заряда к дефектам таким как: пустоты и трещины заряда а также чувствительность заряда к температуре и влажности окружающей среды;

6.  отдельные эксплуатационные трудности;

7.  отдельные конструктивные трудности.

Подводя итог можно тем не менее отметить что достоинства РДТТ обусловили их широкое внедрение в практику. Развитие твердотопливной техники будет продолжаться и в дальнейшем что обусловлено рядом положительных качеств с РДТТ по сравнению с ракетами с ЖРД.

Классификация РДТТ

Ракетные двигатели на твердом топливе могут резко отличаться друг от друга:

·  по назначению

·  по числу камер сгорания;

·  по способу управления величиной и направлением вектора тяги

1)  управляемые;

2)  неуправляемые;

·  по форме КС;

·  по способу крепления заряда к камере;

·  по типу сопла;

·  по числу запусков

1)  однократного действия;

2)  многократного действия.

По назначению РДТТ можно разделить на следующие классы:

1.  РДТТ ракет предназначенных для доставки полезного груза с одного места поверхности земного шара в другое подразделяющиеся в зависимости от дальности действия на следующие группы:

·  РДТТ ракет ближнего действия;

·  РДТТ тактических ракет;

·  РДТТ управляемых и неуправляемых противотанковых ракет;

·  РДТТ ракет средней дальности;

·  РДТТ ракет дальнего действия к которым относятся РДТТ межконтинентальных ракет;

·  Разгонные и маршевые РДТТ для крылатых ракет.

2.  РДТТ ракет предназначенных для доставки полезного груза с поверхности земного шара в околоземное пространство подразделяющиеся в зависимости от непосредственного назначения на следующие группы:

·  РДТТ зенитных ракет;

·  РДТТ антиракет.

3.  РДТТ ракет устанавливаемых на летательных аппаратах и предназначенных для поражения воздушных целей;

4.  РДТТ ракет устанавливаемых на летательных аппаратах и предназначенных для поражения целей расположенных на поверхности земного шара или под водой;

5.  РДТТ ракет устанавливаемых на надводных кораблях и предназначенных для поражения подводных целей;

6.  РДТТ используемые в качестве стартовых ускорителей;

7.  РДТТ служащие для резкого увеличения скорости летательного аппарата на траектории или для проведения маневра;

8.  индивидуальный РДТТ служащий для передвижения или маневрирования человека над поверхностью земли или в условиях космоса;

9.  РДТТ вспомогательного назначения:

·  пороховые аккумуляторы давления (ПАД);

·  бортовые источники питания (БИП);

·  рулевые двигатели;

·  РДТТ для ускорения разделения ступеней составных ракет;

·  тормозные РДТТ обеспечивающие в частности мягкую посадку летательного аппарата;

·  корректирующие РДТТ служащие для исправления скорости и направления полета космического корабля при отклонении от расчетной траектории;

·  РДТТ системы ориентации и стабилизации летательного аппарата;

10.  РДТТ ракет предназначенных для космических кораблей.

Кроме того ракеты с РДТТ используются в народно- хозяйственных целях например для борьбы с градом бурения скважин зондирования высоких слоев атмосферы и.д.

Разнообразие областей применения и выполняемых задач способствовало разработке большого числа различных конструкций отличающихся габаритными массовыми тяговыми временными и другими характеристиками.

Целью данной курсовой работы является разработка РДТТ предназначенная для первой ступени двухступенчатой баллистической ракеты.


1.  Выбор основных параметров ДУ

 

1.1 Выбор типа заряда РДТТ

Заряд твердого топлива является одним из основных узлов двигателя. Поскольку весь запас топлива РДТТ сосредоточен в заряде то им определяются энергетические характеристики двигательной установки и баллистические возможности ракеты. В любом РДТТ топливный заряд является носителем тепловой энергии и источником образования рабочего тела – продуктов сгорания.

В зависимости от способа формирования заряда в камере сгорания различают двигатели:

-  с вкладным зарядом;

-  со скрепленным зарядом.

Вкладной заряд (одна или несколько прессованных шашек) свободно но компактно устанавливается в камеру сгорания и удерживается от осевого смещения установленным со стороны соплового блока специальным устройством. Для зарядов ТТ всестороннего горения в качестве таких устройств используются диафрагмы (решетки) для зарядов ТТ с бронированной внешней поверхностью – опорно-герметизирующий узел. Опорно-герметизирующий узел служит как для фиксирования заряда ТТ в камере сгорания так и для обеспечения застойной зоны (рис.1).


Рис.1. Схема РДТТ с вкладным зарядом ТТ:

1 – бронирующее покрытие; 2 – корпус; 3 – заряд ТТ; 4 – воспламенительное устройство; 5 – сопловое днище; 6 – раструб сопла; 7 – вкладыш (графитовый); 8 – застойная зона;9 – опорно-герметизирующий узел.

Достоинства вкладного заряда:

1.  возможность контроля заряда при хранении;

2.  возможность замены заряда при повреждении.

Недостатки:

1.  вес двигателя выше чем со скрепленным зарядом т.к. требуется более значительный слой теплозащитного покрытия;

2.  наличие дополнительных устройств фиксирующих заряд;

3.  низкий коэффициент заполнения;

4.  контакт горящих газов со стенками камеры сгорания.

Как правило вкладная схема применяется для двигателей относительной небольших размеров с небольшим временем работы – для двигателей вспомогательного назначения и тактических ракет а также для газогенераторов различного назначения.

Скрепленный заряд формируется в камеру сгорания непосредственно свободным литьем или литьем под давлением что обеспечивает его фиксированное положение и изоляцию корпуса от воздействия высокотемпературных продуктов сгорания. В этом случае заряд ТТ выполняет функцию теплозащиты. Скрепление заряда ТТ с корпусом достигается в процессе заливки топлива и последующей его полимеризации с помощью защитно-крепящего (специальное клееобразное вещество) слоя который наносится на внутреннюю поверхность камеры сгорания перед заливкой.

Рис.2. Схема двигателя четырехсопловой конструкции с жесткоскрепленным корпусом камеры сгорания зарядом ТТ:

1 – воспламенительное устройство; 2 – переднее днище; 3 – корпус двигателя;4 – защитно-крепящий слой; 5 – заряд ТТ; 6 – сопловое днище; 7 – сопло.

Достоинства скрепленного заряда:

1.  предохранение стенок камеры сгорания от прогара;

2.  более простая конфигурация;

3.  более эффективно использует объем камеры сгорания;

4.  увеличивается прочность и жесткость РДТТ;

5.   упрощенная технология заряда;

6.  уменьшается возможность появления трещин.

Недостатки:

1.  невозможность контроля заряда при хранении;

2.  невозможность замены заряда при повреждении.

Скрепленные заряды применяют в основном для крупногабаритных РДТТ маршевых ступеней баллистических ракет и ускорителей мощных ракетоносителей в том числе многократного использования.

Вкладные заряды изготавливаются из баллиститного или смесевого топлива а скрепленные – только из смесевого топлива. Это необходимо учесть при выборе топлива.

Учитывая выше изложенные достоинства и недостатки и т.к. проектируемый двигатель является маршевым и имеет большие габариты целесообразно применить заряд скрепленного типа.

1.2 Выбор формы заряда

 

Конструкция заряда РДТТ должна удовлетворять требованиям выдвигаемым техническим заданием на двигатель и заряд. В частности конструкция заряда должна обеспечить:

-  требуемый характер изменения давления в камере сгорания;

-  нормальное функционирование при запуске и стабильное горение на основном режиме работы двигателя;

-  максимальный коэффициент объемного заполнения камеры сгорания топливом;

-  заданное время двигателя на основном режиме и на участке спада давления;

-  допустимые отклонения площади поверхности горения и времени работы двигателя от номинальных значений;

-  минимальное количество остатков топлив догорающих на нерасчетном режиме;

-  максимальную защиту корпуса двигателя от воздействия продуктов сгорания;

-  равномерный вход продуктов сгорания в сопловые аппараты.

Перечисленные выше требования могут удовлетворять несколько конструктивных форм наиболее часто применяемых на практике зарядов ТТ:

1.  в виде шашки – моноблока с различным числом кольцевых канавок и уступах на торцах – бесщелевые. Такие заряды просты в изготовлении в них отсутствуют несимметричные участки. Бесщелевые заряды – моноблоки позволяют обеспечить плавно изменяющуюся поверхность горения максимальное отклонение которой от ее среднего значения не превышает 2…5 %. Такие заряды могут быть созданы при относительной длине порядка 2 5..4. Заряды бесщелевой конструкции применяются обычно в двигателях работающих несколько десятков секунд. Они могут быть как прочноскрепленными с корпусом двигателя так и вкладными.

2.  с пропилами с одной или с другой стороны шашки – щелевые. Применении таких зарядов позволяет создать конструкции обеспечивающие заданный закон изменения поверхности давления в широком диапазоне давления. Эти заряды могут быть как вкладными так и скрепленными с корпусом двигателя. Время работы двигателя имеющего щелевые заряды достигает нескольких десятков секунд.

Недостатком этих зарядов является то что они обладают плохой термостабильностью: при низких температурах у оснований щелей возникают несимметричные участки концентраций напряжений которые могут привести к растрескиванию заряда.

3.  секционные состоящие из двух или нескольких шашек каждая из которых может иметь конусы выточки уступы – секционный бесщелевой. Заряды данного типа совмещают в себе элементы конструкции как бесщелевых так и щелевых зарядов поэтому достоинства и недостатки присущие первым двум типам зарядов присущи и секционным.

Принцип секционирования целесообразно применять для мощных РДТТ главным образом из соображений облегчения производства и транспоритировки.

4.  со звездообразными конусными или ступенчатыми щелями – это все заряды имеющие канал. Применение этих зарядов позволяет практически обеспечивать заданный закон изменения поверхности горения при любых относительных длинах. Заряды со звездообразным каналом требуют меньшей теплозащиты корпуса двигателя чем например щелевые. Однако время работы двигателя с таким зарядом намного меньше. Недостатком данного типа заряда является также наличие участков на поверхности канала с повышенной концентрацией напряжений.

5.  телескопические и многошашечные заряды всестороннего горения.

Страницы: 1 2 3