Реферат: Хром и кислород - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Хром и кислород

Рефераты по химии » Хром и кислород

Хром ( Chromium ). Хром содержится в земной коре в количестве 0,02%. В природе он встречается главным образом в виде хромистого железняка FeO∙Cr2 O3 , богатые месторождения которого имеются в Казахстане и Урале.

При восстановления хромистого железняка углём появляется сплав хрома с железом–феррохром , который непосредственно используется в металлургической промышленности при производстве хромистых сталей. Для получения чистого хрома сначала получают оксид хрома (III), а затем восстанавливают его алюминотермическим способом.

Хром представляет собой твёрдый блестящий металл, плавящийся при 1890˚С; плотность его 7,19 г/см3 . При комнатной температуре хром стоек к воде и к воздуху. Разбавленные серная и соляная кислоты растворяют хром с выделением водорода. В холодной концентрированной азотной кислоте хром нерастворим и после обработки ею становится пассивным.

Металлический хром используется для хромирования, а также в качестве одного из важнейших компонентов легированных сталей. Введение хрома в сталь повышает её устойчивость против коррозии как в водных средах при обычных температурах, так и в газах при повышенных температурах. Кроме того, хромистые стали, обладают повышенной твёрдостью. Хром входит в состав нержавеющих, кислотоупорных, жаропрочных сталей.

Хром образует три оксида: оксид хрома ( II) , или закись хрома , CrO, имеющий основной характер, оксид хрома ( III) , или окись хрома , Cr2 O3 , проявляющий амфотерные свойства, и окись хрома( VI) , или хромовый ангидрид , CrO3 – кислотный оксид. Соответственно этим трём оксидам известны и три ряда соединений хрома.

Соединения хрома ( II). При растворении хрома в соляной кислоте получается раствор голубого цвета, содержащий хлорид хрома ( II) CrCl2 . Если к этому раствору прилить щелочи, то выпадает желтый осадок – гидроксид хрома ( II) Cr(OH)2 . Соединения хрома (II)неустойчивы и быстро окисляются кислородом воздуха в соединения хрома (III).

Соединения хрома ( III). Оксид хрома ( III) , Cr2 O3 представляет собой тугоплавкое вещество зелёного цвета, применя6емое под названием зелёного крона для приготовления клеевой и масляной красок. При сплавлении с силикатами оксид хрома (III) окрашивает их в зелёный цвет и поэтому служит для окраски стекла и фарфора. Cr2 O3 входит также в состав полирующих средств.

Гидроксид хрома ( III) Cr(OH)3 выпадает в виде синевато-серого осадка при действии щелочей на соли хрома (III):

Cr3+ +3OH- →Cr(OH)3

Подобно гидроксидам алюминия и цинка, он имеет амфотерный характер и растворяется в кислотах с образованием солей хрома (III), а в щелочах – изумрудно-зелёных растворов хримотов , например:

Cr(OH)3 + 3NaOH→Na3 [Cr(OH)6 ]

или

Cr(OH)3 +3OH- →[Cr(OH)6 ]3-

Хромиты, полученные сплавлением Cr2 O3 с оксидами других металлов и известные главным образом для двухвалентных металлов, имеют состав, отвечающий формуле М(CrO2 )2 , и представляют собой соли метахромистой кислоты HcrO2 . к ним относится и природный хромистый железняк Fe(CrO2 )2 .

Из солей хрома (III) самой распространённой является двойная соль хрома и калия – хромокалиевые квасцы KCr(SO4 )2 ∙12H2 O, образующие сине-фиолетовые кристаллы.

Соли хрома (III) во многом похожи на соли алюминия. В водных растворах они сильно гидролизованы и легко превращаются в основные соли. Со слабыми кислотами хром (III), подобно алюминию, солей не образует.

Соединения хрома ( VI). Важнейшими соединениями хрома (VI) являются триоксид хрома , или хромовый ангидрид , CrO3 и соли отвечающих ему кислот – хромовой H2 CrO4 и двухромовой H2 CrO7 . Обе кислоты существуют только в водном растворе и при попытках выделить их из раствора, распадаются на хромовый ангидрид и воду; но соли их достаточно стойки. Соли хромовой кислоты называются хроматами , а двухромовой – бихроматами или дихроматами .

Почти все хроматы имеют желтую окраску. Некоторые из них применяются в качестве красок. Например, нерастворимый в воде хромат свинца PbCrO4 , под названием желтый крон , служит для приготовления желтой масляной краски.

При подкислении раствора какого-нибудь хромата, например, хромата калия K2 CrO4 , чисто-желтая окраска раствора сменяется на оранжевую вследствие перехода ионов CrO2- 4 в ионы Cr2 O2- 7 . Из полученного раствора может быть выделена соль двухромовой кислоты – двухромат калия K2 Cr2 O7 – в виде оранжево-красных кристаллов. Реакция превращения хромата в дихромат выражается уравнением:

2CrO2- 4 +2H+ ↔Cr2 O2- 7 +H2 O

Реакция обратима. Это значит, что при растворении дихромата в воде всегда образуется некоторое, хотя и незначительное, количество ионов Н+ и CrO2- 4 ; поэтому раствор дихромата имеет, кислую реакцию. Если к раствору дихромата прибавлять щелочь, то гидроксид-ионы будут связывать находящиеся в растворе ионы водорода, равновесие смещается влево и в результате дихромат превращается в хромат. Таким образом, в присутствии избытка гидроксид-ионов в растворе практически существуют только ионы CrO2- 4 , т. е. хромат, а при избытке ионов водорода – ионы Cr2 O2- 7 , т. е. дихромат.

Хроматы щелочных металлов получаются путём окисления соединения хрома (III) в присутствии щелочи. Так, при действии брома на раствор хромита калия образуется хромат калия по уравнению:

2K3 [Cr(OH)6 ]+3Br2 +4KOH→2K2 CrO4 +6KBr+8H2 O

О происходящем окислении можно судить по тому, что изумрудно-зелёная окраска раствора хромита переходит в ярко-желтую.

Хроматы могут быть получены также сплавлением Cr2 O3 со щелочью в присутствии какого-нибудь окислителя, например хлората калия:

Cr2 O3 +4KOH+KClO3 →2K2 CrO4 +KCl+2H2 O

Хроматы и дихроматы – сильные окислительные. Поэтому ими широко пользуются для окисления различных веществ. Окисление производится в кислом растворе и обычно сопровождается резким изменением окраски (дихроматы окрашены в оранжевый цвет, а соли хромата (III) – в зелёный или зеленовато-фиолетовый).

Мы видели, что в кислых и в щелочных растворах соединения хрома (III) и хрома (VI) существует в разных формах: в кислой среде в виде ионов Cr3+ или Cr2 O2- 7 , а в щелочной – в виде ионов [Cr(OH)6 ]3- или CrO2- 4 . Поэтому взаимопревращение соединений хрома (III) и хрома (VI) протекает по-разному в зависимости от реакции раствора. В кислой среде устанавливается равновесие

Cr2 O2- 7 +14H+ +6eˉ↔2Cr3+ +7H2 O

а в щелочной

[Cr(OH)6 ]3- +2OH- ↔CrO2- 4 +4H2 O+3eˉ

Однако и в кислой, и в щелочной среде окисления хрома (III)приводит к уменьшению pH раствора; обратный же процесс – восстановление хрома (VI) – сопровождается увеличением pH. Поэтому, в соответствии с принципом Ле Шарля, при повышении кислотной среды равновесие смещается в направлении восстановления хрома (VI), а при уменьшении кислотности – в направлении окисления хрома (III). Иначе говоря, окислительные свойства соединений хрома (VI) наиболее сильно выражены в кислой среде, а восстановительные свойства соединений хрома (III) – в щелочной. Именно поэтому, как указывалось выше, окисление хромитов в хроматы осуществляют в присутствии щелочи, а соединения хрома (VI) применяют в качестве окислителей в кислых растворах.

Приведём несколько примеров окислительно-восстановительных реакций, протекающих при участии дихроматов.

1. При пропускании сероводорода через подкисленный серной кислотой раствор дихромата оранжевая окраска раствора переходит в зелёную и одновременно жидкость становится мутной вследствие выделения серы:

K2 Cr2 O7 +3H2 S+4H2 SO4 →Cr2 (SO4 )3 +3S↓+K2 SO4 +7H2 O

2. При действии концентрированной соляной кислоты на дихромат калия выделяется хлор и получается зелёный раствор, содержащий хлорид хрома (III):

K2 Cr2 O7 +14HCl→2CrCl3 +3Cl2 ↑+2KCl+7H2 O

3. Если пропускать диоксид серы через концентрированный раствор дихромата калия, содержащий достаточное количество серной кислоты, то образуются эквимолекулярные количества сульфатов калия и хрома (III):

K2 Cr2 O7 +3SO2 +H2 SO4 →Cr2 (SO4 )3 +K2 SO4 +H2 O

При выпаривании раствора из него выделяются хромокалиевые квасцы KCr(SO4 )2 ∙12H2 O. Этой реакцией пользуются для получения хромокалиевых квасцов в промышленности.

Наиболее важными из дихроматов являются дихромат калия K2 Cr2 O7 и дихромат натрия Na2 Cr2 O7 ∙2H2 O, образующие оранжево-красные кристаллы. Обе соли, известные также под названием хромпиков , широко применяются в качестве окислителей при производстве многих органических соединений, в кожевенной промышленности при дублении кож, в спичечной и текстильной промышленности. Смесь концентрированной серной кислоты с водным раствором дихромата калия или натрия под названием «хромовой смеси» часто применяется для энергичного окисления и для очистки химической посуды.

Все соли хромовых кислот ядовиты.

Триоксид хрома , или хромовый ангидрид , CrO3 выпадает в виде тёмно-красных игольчатых кристаллов при действии концентрированной серной кислоты на насыщенный раствор дихромата калия или натрия:

K2 Cr2 O7 +H2 SO4 →2CrO3 ↓+K2 SO4 +H2 O

Хромовый ангидрид принадлежит к числу наиболее сильных окислителей. Например, этиловый спирт при соприкосновении с ним воспламеняется. Производя окисление, хромовый ангидрид превращается в оксид хрома (III) Cr2 O3 .

Хромовый ангидрид легко растворяется в воде с образованием хромовой и двухромовой кислот.

Кислород ( Oxygenium ). Кислород – самый распространенный элемент земной коры. В свободном состоянии 20,9% кислорода находится в атмосферном воздухе, что составляет приблизительно 1/5 по объему.

Кислород входит в состав почти всех окружающих нас веществ. Так, например, вода, песок, многие горные породы и минералы, составляющие земную кору, содержат кислород. Кислород является также важной частью многих органических соединений, например белков, жиров и углеводов, имеющих исключительно большое значение в жизни растений, животных и человека. Общее количество кислорода в земной коре близко к половине её массы (около 47%).

Природный кислород состоит из трёх стабильных изотопов: 16 О (99,76%), 17 О (0,04%) и 18 О (0,2%).

Получение и свойства кислорода. Кислород был впервые получен в чистом виде К. В. Шееле в 1772г., а затем в 1774г. Д. Пристли (Англия), который выделил го из оксида ртути (II). Однако Пристли не знал, что полученный им газ входит в состав воздуха. Только спустя несколько лет Лавуазье, подробно изучивший свойства этого газа, установил, что он является составной частью воздуха.

В промышленности кислород получают из воздуха, который представляет собой смесь различных газов; основные компоненты в нём – азот и кислород. Для получения кислорода воздух под давлением сжижают. Так как температура кипения жидкого азота (-196˚С) ниже температуры кипения жидкого кислорода (-183˚С), то азот испаряется, а жидкий кислород остаётся. Газообразный кислород хранят в стальных баллонах под давлением 15 МПа. Важнейшим лабораторным способом его получения служит электролиз водных растворов щелочей. Небольшие количества кислорода можно также получать взаимодействием раствора перманганата калия с подкисленным раствором пероксида водорода или термическим разложением некоторых кислородсодержащих веществ, перманганата калия:

2KMnO4 →K2 MnO4 +MnO2 +O2

Кислород – бесцветный газ, не имеющий запаха. Он немного тяжелее воздуха: масса 1 кислорода при нормальных условиях равна 1,43г, а 1 л воздуха 1,293 г. Кислород растворяется в воде, хотя и в небольших количествах: 100объёмов воды при 0˚С растворяют 4,9, а при 20˚С – 3,1 объёма кислорода.

Кислород образует двухатомные молекулы, характеризующиеся высокой прочностью. При комнатной температуре его диссоциация на атомы ничтожна; лишь при 1500˚С она становится заметной.

Магнитные свойства кислорода указывают на наличие в молекуле О2 двух неспаренных электронов. Эти электроны размещаются на разрыхляющих молекулярных π -орбиталях. Парамагнитность кислорода проявляется, в частности, в том, что жидкий кислород притягивается магнитом.

Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно (кроме галогенов, золота и платины). Скорость взаимодействия, как с простыми, так и со сложными веществами зависит от природы вещества и от температуры. Некоторые вещества, например, оксид азота(II), гемоглобин крови, уже при комнатной температуре соединяются с кислородом воздуха со значительной скоростью. Многие реакции окисления ускоряются катализаторами. Например, в присутствии дисперсной платины смесь водорода с кислородом воспламеняется при комнатной температуре. Характерной особенностью многих реакций соединения с кислородом является выделение теплоты и света. Такой процесс называется горением .

Горение в чистом кислороде происходит гораздо энергичнее, чем в воздухе. Хотя при этом выделяется такое же количество теплоты как и при горении в воздухе, но процесс протекает быстрее и выделяющаяся теплота не тратится на нагревание азота воздуха; поэтому температура горения в кислороде значительно выше, чем в воздухе.

Кислород играет исключительно важную роль в природе. При участии кислорода совершается один из важнейших жизненных процессов – дыхание. Важное значение имеет и другой процесс, в котором участвует кислород, - тление и гниение погибших животных и растений; при этом сложные органические вещества превращаются в более простые (в конечном результате в CO2 , воду и азот), а последние вновь вступают в общий круговорот веществ в природе.

Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затруднённом дыхании.