Реферат: Умова перпендикулярності прямих - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Умова перпендикулярності прямих

Рефераты по астрономии » Умова перпендикулярності прямих

: к/=.

8. Рівняння прямої, що проходить через дану точку (х1,у1):

у-у1=к(х-х1)

9. Рівняння прямої, що проходить через дві точки (х1,у1) і (х2,у2):

10. Рівняння прямої, що відтинає відрізки а і в на осях координат:

11. Загальне рівняння прямої:

Ах+Ву+С=0, (А2+В20).

12. Відстань від точки (х1,у1) до прямої Ах+Ву+С=0:

=

13. Рівняння кола з центром (х0,у0) і радіусом R:

(х-х0)2+(у-у0)2=R2

14. Канонічне рівняння еліпса з півосями а і в:

(1)

Фокуси еліпса F(c;0) i F/(-c;0), де с2=а2-в2

15. Фокальні радіуси точки (х,у) еліпса (1):

r=a-Ex; r/=a+Ex,

де Е= - ексцентриситет еліпса.

16. Канонічне рівняння гіперболи з півосями а і в:

(2)

2

нерівностями axb, y1(x)yy2(x), z1(x, y)zz2(x, y)

де yi(x), zі(x, y), (і=1, 2) – неперервні функції, то потрійний інтеграл в прямокутних координатах від неперервної функції f(x, y z) можна обчислити за формулою:

.


Для заміток.


І. Аналітична геометрія на площині.

1. Паралельне перенесення системи координат:

х'=х-а, у'=у-в,

де О' (а;в) - новий початок, (х;у) - старі координати точки, [х';у'] - її нові координати.

2. Поворот системи координат (при нерухомому початку):

х= х'cos- у'sin; y= x'sin+ y'cоs,

де (х,у) - старі координати точки, [х',у'] - її нові координати,  - кут повороту.

3. Відстань між точками (х1,у1) і (х2,у2):

d=

4. Координати точки, що ділить відрізок з кінцями (х1,у1) і (х2,у2) в даному відношенні :

x= y=.

При =1, маємо координати середини відрізка:

х= у=.

5. Площа трикутника з вершинами (х1,у1), (х2,у2) і (х3,у3):

S=.

6. Рівняння прямої з кутовим коефіцієнтом:

у=кх+в,

де к=tg (кутовий коефіцієнт) - нахил прямої до осі Ох,

в - довжина відрізка, що відтинає пряма на осі Оу.

7. tg= - тангенс кута між прямими з кутовими коефіцієнтами к і к/.

Умова паралельності прямих: к/=к.


1

24. Параметричні рівняння еліпса з півосями а і в:

x=a cos t, y=b sin t.

25. Параметричні рівняння циклоїди:

x=a(t-sin t), y=a(1-cos t).

II. Диференціальне числення функцій

однієї змінної.

Основні теореми про границі:

а)

б)

Зокрема,

в)

Чудові границі:

а) б)

3. Зв'язок між десятковими та натуральними логарифмами:

lg x=М ln x, де М=lg e=0,43429…

4. Приріст функції у=f(x), що відповідає приросту аргументу х:

5. Умова неперервності функції у=f(x):

Основна властивість неперервної функції:

6. Похідна

Геометрично y /=f /(x) - кутовий коефіцієнт дотичної до

4

XI. Подвійні та потрійні інтеграли.

1. Подвійним інтегралом від функції f(x, y), розповсюдженим на область S, називається число:

, (1)

де (хі, уі) є Si (і=1, 2,…n) і d – найбільший діаметр комірок Si.

Якщо f(x, y)0, то геометрично інтеграл (1) являє собою об’єм прямого циліндроїда, побудованого на основі S і обмеженого зверху поверхнею z=f(x, y).

2. Якщо область інтегрування S стандартна відносно осі Оу і визначається нерівностями axb, y1(x)yy2(x),

де y1(x),y2(x) – неперервні функції, то подвійний інтеграл в прямокутних декартових координатах від неперервної фуункції f(x, y) виражається формулою:

.

3. Подвійний інтеграл в полярних координатах  і r,

де x=r cos, y=rsin має вигляд:

Якщо область інтегрування S визначається нерівностями:, r1()rr2(), то

4. Якщо =(х, у) – поверхнева густина пластини S, то її

маса є (2)


25

(фізичний зміст подвійного інтегралу). Зокрема, при =1 отримуємо формулу площі пластинки

5. Статистичні моменти пластинки S відносно координатних осей Ох,Оу виражаються інтегралами:

,

де =(х, у) – поверхнева густина пластинки S.

6. Координати центра мас пластинки S визначаються за

формулами: , , (3)

де m – маса пластинки.

Для однорідної пластинки в формулах (2), (3) приймаємо =1.

7. Моменти інерції пластинки S відносно координатних осей Ох і Оу виражається інтегралами:

, ,

де =(х, у) – поверхнева густина пластинки.

8. Потрійним інтегралом від функції f(x, y z), розповсюдженим на область V, називається число:

, (4)

де (xi, yi, zi) є Vi (i=1, 2, 3,…n), d – найбільший діаметр комірок Vi .

Якщо f(x, y z) є густиною в точці (x, y z), то потрійний інтеграл (4) являє собою масу, що заповнює обєм V.

9. Обєм тіла V дорівнює: .

10. Якщо область інтегрування V визначається

26

Фокуси гіперболи F(c;0) і F/(-c;0), де с2=а2+в2

17. Фокальні радіуси точки (х,у) гіперболи (2):

r=(Ex-a), r/=(Ex+a),

де Е= - ексцентриситет гіперболи.

18. Асимптоти гіперболи (2):

у=.

19. Графік оберненої пропорційності

ху=с (с0)

- рівностороння гіпербола з асимптотами х=0, у=0.

20. Канонічне рівняння параболи з параметром р:

у2=2рх

Фокус параболи: F(p/2, 0): рівняння директриси: х=-(р/2); фокальний радіус точки (х,у) параболи: r=x+(p/2).

21. Графік квадратного тричлена

у=Ах2+Вх+С

вертикальна парабола з вершиною

22. Полярні координати точки з прямокутними координатами х і у:

tg=

Прямокутні координати точки з полярними координатами

 і .

x= cos, y= sin.

23. Параметричні рівняння кола радіуса R з центром в початку координат:

x=R cos t, y=R sin t. (t - параметр)

3

f/(x0)=0 або f/(x0) не існує.

б) Достатні умови екструмуму функції f(x) в точці x0:

f/(x0)=0, f/(x0-h1)f/(x0+h2)<0 при довільних досить малих h1>0 і h2>0, або

f/(x0)=0, f/(x0)0

12. - Графік функції y=f(x) вгнутий (або випуклий вниз) якщо f/(x)>0 i випуклий (випуклий вверх), якщо f/(x)<0.

Необхідна умова точки перегинy графіка функції

y=f(x) при x=x0: f/(x0)=0 або f/(x0)не існує.

Достатня умова точки перегину при х=х0:

f (x0)=0, f/(x0-h1)f''(x0+h2)<0 при будь-яких досить малих h1>0, h2>0.

13. Якщо функція f(x) неперервна на відрізку [,] і f()f()<0, то корінь  рівняння f(x)=0 наближено можна обчислити за формулами:

а) (метод хорд)

б) , де f ()0; f()-f()>0 (метод дотичних).

14. Диференціал незалежної змінної х: dx=∆x. Диференціал функції у=f(x):dy=ydx. Зв’язок приросту ∆y функції з диференціалом dy функції:

∆y=dy+∆x, де →0 при ∆х→0.

Таблиця диференціалів функцій.

1) dun=nun-1du; 7) d(ctg u)=-

2) dau=auln a du (a>0); deu=eudu; 8) d(arcsin u)=

3)d(logau)=; 9) d(arccos u)=-

6

п/п

Характер коренів k1i k2 характеристичного рівняння

Вигляд загального розвязку

1

Корені k1 i k2 дійсні і різні

2

Корені рівні k1 = k2

3

Корені комплексні k1=+і k2=-і

9. Таблиця 2.

Характер частинного розвязку z-неоднорідного рівняння у+ру+qy=f(x) (p i q - сталі) в залежності від правої частини f(x).

п/п

Права частина f(x)

Випадки

Частинний розвязок


1


f(x)=aemx (a,m - сталі)

m2+pm+q0,

m2+pm+q=0:

p2-4q>0,

p2-4q<0.

z=Aemx,

---------

z=Axemx,

z=Ax2emx.

2 f(x)=Mcosx+Nsinx (M,N, - сталі, 0)

p2+(q-2)20,

p=0, q=2.

z=Acosx+Bsinx,

z=x(Acosx+Bsinx)

3

f(x)=ax2+bx+c

(a,b,c – сталі)

q0,

q=0, p0.

z=Ax2+Bx+C,

z=x(Ax2+Bx+C).

A, B, C – сталі невизначенні коефіцієнти.


Х.Криволінійні інтеграли.

1. Криволінійний інтеграл першого роду від неперервної функції f(x, y), взятий по кусково гладкій кривій К: x=x(t), y=y(t) (t є [, ]), дорівнює

(1)

Якщо крива К задана рівнянням у=у(х) (axb), то


23

Аналогічно визначається криволінійний інтеграл першого роду для випадку просторової кривої К.

Якщо f(x, y) є лінійна густина лінії К, то інтеграл (1) являє собою масу лінії К.

2.Криволінійний інтеграл другого роду від пари неперервних функцій Х(х, у), У(х, у), взятий по кусково гладкому шляху К: x=x(t), y=y(t) (t є [, ]), визначається за формулою:

(2)

Якщо шлях К задано рівнянням у=у(х) (х є [, ]), то

.

Фналогічно визначається криволінійний інтеграл другого роду для просторової кривої К.

Фізично інтеграл (2) являє собою роботу змінної сили

F={X(x, y), Y(x, y)} вздовж шляху К.

3. Якщо виконується умова Х(х, у)dx+Y(x, y)dy=dU(x, y), то інтеграл (2) незалежить від шляху інтегрування К і

, (3)

де (х1,у1) – початкова точка шляху і (х2, у2) – кінцева точка шляху.

Фізично інтеграл (3) являє собою роботу сили, що має потенціал U(x, y).


24

графіка функції у=f(x) в точці з абсцисою х.

Правила і формули диференціювання:

а) C=0; б) (U+V-W)=U+V-W;

в) (CU)=CU; г) (UV)=UV+VU;

д) е)

є) ; и) (хn)=n xn-1, x=1;

і) (sin x)=cos x; ї) (cos x)=-sin x;

й) (tg x)=sec2x; к) (сtg х)=-cosec2x;

л) м) (аx)=ax ln a, (ex)=ex.

н) (аrcsin x)= o) (arccos x)=;

п) (arctg x)= р) (arcctg x)=

7. Теорема Лагранжа про кінцеві прирости диференційовної функції:

f(x2)-f(x1)=(x2-x1)f/(), де  є (х1,х2).

8. Функія у=f(x) зростає, якщо f/(x)>0, і спадає, якщо f(x)<0.

9. Правило Лопіталя для невизначеностей виду або :

якщо границя з права існує.

10. Локальна формула Тейлора:

f(x)=f(x0)+f/(x0)(x-x0)+…+

де f(n)(x) існує в деякому повному околі точки х0.

11.а) Необхідна умова екстремуму функції f(x) в точці x0:

5

6) .

7)

8)

9) .

10) .

11) .

12) де 0.

13)

14)

Основні методи інтегрування.

а) метод розкладу:

, де f(x)=f1(x)+f2(x)

б) метод підстановки: якщо x=(t), то

в) метод інтегрування частинами:

4. Формула Ньютона-Лейбніца: якщо f(x) - неперервна і F(x)=f(x), то

.

5. Визначений інтеграл, як границя інтегральної суми:

8

де , (n=1, 2,…).


IX.Диференціальні рівняння.

1. Диференціальні рівняння з відокремленими змінними.

X(x)Y(y)dx+X1(x)Y1(y)dy=0

має загальний інтеграл: (1)

Особливі розвязки, що не входять в інтеграл (1), визначаються з рівнянь: Х1(х)=0 і У1(у)=0.

2. Однорідні диференціальні рівняння першого порядку:

P(x, y)dx+Q(x, y)dy=0,

де P(x, y) і Q(x, y) – щднорідні неперервні функції одинакового степеня, розвязуються за допомогою підстановки y=ux (u – нова функція).

3. Лінійні диференціальні рівняння першого порядку:

a(x)y+b(x)y+c(x)=0

можна розвязати за допомогою підстановки y=uv,

де u – не нульовий розвязок однорідного рівняння

a(x)y+b(x)y=0, а v – нова функція.

4. Інтегровані випадки диференціального рівняння другого порядку:

а) якщо y=f(x), то загальний розвязок:

;

б) якщо y=f(у), то загальний інтеграл:

;

в) якщо y=f(у), то загальний інтеграл рівняння можна

21

знайти з співвідношення: , де у=р.

5. Випадки пониження порядку для диференціального рівняння другого порядку:

а) якщо у=f(x, y), то приймаючи у=р(х), отримуємо:

;

б) якщо у=f(у, y), то приймаючи у=р(у), отримуємо:

.

6. Загальний розвязок лінійного однорідного диференці-ального рівняння другого порядку:

у+р(х)у+q(x)y=0 має вигляд

у=С1у1+С2у2,

де у1 і у2 – лінійно незалежні частинні розвязки.

7. Загальний розвязок лінійного неоднорідного диференці-ального рівняння другого порядку:

у+р(х)у+q(x)y=f(x) має вигляд ,

де - загальний розвязок відповідного неоднорідного рівняння; z – частинний розвязок даного неоднорідного рівняння.

8. Таблиця 1.

Загальний вигляд розвязків однорідного рівняння у+ру+qy=0 (p i q - сталі) в залежності від коренів характеристичного рівняння k2+pk+q=0.


22

(a>0,a1); d(ln u)=

4) d(sin u)=cos u du; 10) d(arctg u)=;

5) d(cos u)= -sin u du; 11) d(arcctg u)=

6) d(tg u)= 12) df(u)=f(u)du.

15.Малий приріст диференційованої функції:

f(x+∆x)-f(x)f(x)∆x

16. Диференціал другого порядку функції у=f(x), де х - незалежна змінна (d2x)=0:

d2y=у''dx2.


III. Інтегральне числення.

1. Якщо dy=f(x)dx, то y= (незвичайний інтеграл).

2. Основні властивості незвичайного інтеграла:

а)

б) в) (А0)

г)

Таблиця найпростіших невизначених інтегралів.

1) (m-1).

2) , (при х<0 i при x>0).

3) ;

4) (a>0, a1).

5) .


7

де h=(b-a)/n, x0=a, xn=b, y=f(x), yi=f(x0+ih), (i=0,1,2,…,n).

11. Формула Сімпсона:

де h=(b-a)/2.

12. Невласний інтеграл:

13. Площа криволінійної трапеції обмеженої неперервною лінією у=f(x) (f(x)0), віссю Ох і двома вертикалями х=а, х=b (a<b): .

14. Площа сектора обмеженого неперервною лінією =f() ( i  - полярні координати) і двома промінями =, = (<): .

15. Довжина дуги гладкої кривої y=f(x) в прямокутних координатах х і у від точки х=а до точки х=b (a<b):

.

16. Довжина дуги гладкої кривої =f() в полярних координатах  і  від точки = до точки = (<):

,

17. Довжина дуги гладкої кривої х=(t) y=(t), задано параметрично (t0<T):

18.Об’єм тіла з відомим поперечним перерізом S(x):


10

9. Ряд Маклорена.

10. Розклад в степеневі ряди функцій:

а) , при x < 1;

б) ln(1+x) = , при –1<x1;

в) , при x  1;

г) , при x < +;

д) ,

при x < +;

е) , при x < +;

ж) ,

при x < 1.

11. Ряд Тейлора.

12. Ряди в комплексній області: .

13. Абсолютна збіжність рядів з коиплексними членами. Якщо ряд збігається, то ряд


19

також збігається (абсолютно).

14. Формули Ейлера: , .

15. Тригонометричний ряд Фурє кусково-гладкої функції f(x) періоду 2l має вигляд:

, (1)

де , (n=0, 1, 2,…);

, (n=1, 2,…).

(коефіцієнти Фурє функції f(x)). Для функції f(x) періоду 2 маємо ,

де , (n=0, 1, 2,…).

В точках розриву функцій f(x) сума ряду (1) дорівнює

16. Якщо 2l – періодична функція f(x) парна, то

,

де , (n=0,1, 2,…).

Якщо 2l – періодична функція f(x) непарна, то

,


20

де і

6. Основні властивості визначеного інтегралу (розглядувані функції неперервні):

а) ; б)

в) г)

д)

е)

ж)

7. Теорема про середнє: якщо f(x) - неперервна на [a,b], то

, де а<c<b.

8. Формула інтегрування частинами у визначеному інтегралі:

9. Формула заміни змінної у визначеному інтегралі:

де а=(), b=().

10. Формула трапецій: ,

9

z=r(cos+isin), де r=z; =Arg z

5. Теореми про модуль та аргумент:

а) z1+z2  z1 + z2; б) z1z2  z1 z2,

Arg z1z2=Arg z1+Arg z2;

в) Arg =Arg z1-Arg z2; (z20);

г) zn = z n; Arg zn=n Arg z (n - ціле).

6. Корінь з комплексного числа:

, (k=0,1,2,…,n-1)

7. Показникова формула комплексного числа:

z = r ei, де z = z,  = Arg z.

8. Визначник другого порядку:

.

9. Розв’язок системи знаходяться за формулами: х=х/; у=у/ (правило Крамера), де

.

10. Розв’язок однорідної системи: визначається за формулами: х=1t, y=-2t, z=3t; (-<t<),

де -

мінори матриці .

12

3. Повний диференціал функції z = f(x, y) від незалежних змінних х, у:

де dx=x, dy=y.

Якщо U = f(x, y, z), то .

4. Малий приріст диференційованої функції:

5. Похідна функції U = f(x, y) по напряму l, заданому одиничним вектором {cos , cos } дорівнює:

.

Аналогічно, якщо U = f(x, y, z) і {cos , cos , cos } – одиничний вектор напряму l, то

6. Точки можливого екстремуму диференціальної функції U = f(x, y, z) визначаються з рівнянь:

fх(x, y, z)=0; fy(x, y, z)=0; fz(x, y, z)=0

7. Градієнтом скалярного поля U = f(x, y, z) є вектор

Звідси .

8. Якщо P(x, y)dx + Q(x, y)dy є повним диференціалом в області G, то

17

((x, y) є G).

(ознака повного диференціалу.).


VIII. Ряди.

1.Основне означення: .

2. Необхідна ознака збіжності ряду:

якщо ряд збігається, то .

3. Геометрична прогресія: , якщо q < 1.

4. Гармонічний ряд 1 + 1/2 + 1/3 + … (розбігається).

Ознака Даламбера. Нехай для ряду (Un>0) існує

Тоді: а) Якщо l < 1, то ряд збігається;

б) Якщо l > 1, то ряд розбігається, Un непрямує до 0.

6. Абсолютна збіжність. Якщо ряд збігається, то ряд також збігається (абсолютно).

7. Ознака Лейбніца. Якщо і при , то знакозмінний ряд V1-V2+V3-V4+… - збігається.

8. Радіус збіжності степеневого ряду а0+а1х+а2х2+… визначається за формулою:, якщо остання має зміст.

18

.

19. Об’єм тіла обертання:

а) навколо осі Ох: (a<b)

б) навколо осі Оу: (c<d)

20. Робота змінної сили F=F(x) на ділянці [a,b]:


ІV. Комплексні числа, визначники та системи рівнянь.

1. Комплексне число z=x+iy, де х=Re z, y=Im z - дійсні числа, і2=-1.

Модуль комплексного числа:

Рівність комплексних чисел:

z1=z2Re z1=Re z2, Im z1=Im z2

2. Спряжене число для комплексного числа z=x+iy:

3. Арифметичні дії над комплексними числами z1=x1+iy1, z2=x2+iy2:

a)

б)

в) (z20)

Зокрема Re z =1/2 (z+), Im z= (z-)/2і,  z 2=z.

4. Тригонометрична форма комплексного числа:

11


V. Елементи векторної алгебри.

1. Сумою векторів , , є вектор .

2. Різницею векторів і є вектор , де

- - вектор, протилежний вектору .

3. Добутком вектора на скаляр є вектор такий що , де і , причому напрям вектора співпадає з напрямком вектора , якщо k > 0, і протилежний до нього, якщо k < 0.

4. Вектор і колінеарні, якщо (k - скаляр).

Вектори , , компланарні, якщо ,(k,l-скаляри)

5. Скалярним добутком векторів і є число

, де =<(, ).

Вектори і ортогональні, якщо * = 0.

Якщо і , то .

6. Векторним добутком векторів і є вектор ,

де , , ( = <(a,b)),

причому а, b, с - права трійк.

Якщо і , то , де

i, j, k - одиничні вектори (орти), напрямлені згідно з відповідними осями координатами.

7. Мішаний добуток являє собою об’єм (зі знаком) паралелепіпеда, побудованого на векторах а, b, с.

Якщо , , , то


14

.


VI. Аналітична геометрія в просторі.

1. Декартові прямокутні координати точки М(х, у, z) простору Охуz є:

x=rx , y=ry , z=rz , де r= - радіус-вектор точки М.

2. Довжина та напрям вектора а={ax,ay,az} визначаються формулами: ;

cos =ax/a; cos =ay/a; cos =az/a,

(cos2+cos2+cos2=1),

де cos , cos , cos  - напрямні косинуси вектора а.

3. Відстань між двома точками M1(x1,y1,z1) i M2(x2,y2,z2):

.

4. Рівняння площини з нормальним вектором N={A,B,C}0, що проходить через точку M0(x0,y0,z0) є N(r-r0)=0,…(1)

де r - радіус-вектор текучої точки площини M(x,y,z) і r0 - радіус-вектор точки М0.

В координатах рівняння (1) має вид:

А(х-х0)+В(у-у0)+С(z-z0)=0 або Ax+By+Cz+D=0 (2)

де D= -Ax0-By0-Cz0 (згальне рівняння площини).

5. Відстань від точки M1(x1,y1,z1) до площини (2) дорівнює:

6. Векторне рівняння прямої лінії в просторі:

r=r0+st (3)

15

де r{x,y,z} - текучий радіус-вектор прямої; r0{x0,y0,z0} - радіус-вектор фіксованої точки прямої, s{m,n,p}0 - напрямний вектор прямої і t - параметр (-<t<+).

В координатній формі рівняння прямої (3) має вигляд:

.

7. Пряма лінія як перетин площин визначається рівняннями: (4)

Напрямним вектором прямої (4) є S=NN, де N={A,B,C}, N={A,B,C}.

8. Рівняння сфери радіуса R з центром (x0,y0,z0):

.

9. Рівняння трьохосьового еліпса з півосями a,b,c:

.

10. Рівняння параболоїда обертання навколо осі Оz:

x2+y2=2pz.


VII. Диференціальне числення функції

декількох змінних.

1. Умова некперервності функції z=f(x,y):

,

або

Аналогічно визначається неперервність функції f(x, y, z).

2. Частинні похідні функції z = f(x, y) по змінних х, у:


16

11. Визначник третього порядку:

де - алгебраїчні

доповнення відповідних елементів визначника.

12. Розв’язок системи визначається за формулою Крамера х=х/; у=у/; z=z/,

де

.

13. Розв’язок однорідної системи , якщо


знаходяться з підсистеми: .


13