Реферат: Вектори лінійні операції над ними - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Вектори лінійні операції над ними

Рефераты по астрономии » Вектори лінійні операції над ними

Пошукова робота

на тему:

Вектори, лінійні операції над ними.

План

Вектори і скаляри.

Множення вектора на число.

Додавання та віднімання векторів.

Проекція вектора на вісь.

1. Вектори і скаляри

            У природі існують величини двох видів: такі, що характеризуються лише своїм числовим значенням, і такі, для характеристики яких крім числового значення ще потрібно знати їх напрямок у просторі. Перші з них називаються скалярними, а другі –векторними.

            Так, маса, температура, час, густина, площа, об’єм, довжина відрізка, електричний заряд, опір провідника - скаляри, а сила, момент сили, швидкість, прискорення, напруженість силового поля - векторні величини.

            Слід мати на увазі, що одна і та сама величина може розглядатись і як скаляр, і як вектор. Наприклад: сила струму - величина скалярна, бо вона визначається лише величиною заряду незалежно від того, в якому напрямку і під яким кутом до площадки рухаються частинки, що несуть заряд.

            Але така характеристика електричного струму неповна. У багатьох випадках потрібно розглядати напрямок, в якому рухаються заряджені частинки. Для врахування напрямку переносу зарядів вводиться вектор густини струму.

            Векторна величина геометрично зображається з допомогою направленого відрізка певної довжини і певному масштабі після вибору одиниці масштабу.

            Вектор позначається на письмі двома буквами, причому перша-початок вектора, друга - його кінець з вказанням стрілкою напрямку. Наприклад,  - вектор, початок якого збігається з точкою , а кінець - з точкою , напрямок – від  до . Довжина вектора (інакше - модуль вектора) записується так: .

            Часто вектор позначають однією буквою, наприклад . Якщо вектор позначений однією буквою, то часто в книгах її виділяють жирним шрифтом, але без риски. Вектор можна позначати і так: , .

            Два вектори називаються колінеарними, якщо вони розташовані на одній прямій або на паралельних прямих.

             Вектори називаються компланарними, якщо вони паралельні деякій площині (або лежать в одній площині).

            Два вектори називаються рівними тоді і тільки тоді, коли вони мають однакову довжину і однаковий напрямок, тобто вони розміщені на паралельних прямих.

Звідси випливає, що при паралельному перенесенні вектора одержуємо вектор, рівний даному. Тому початок вектора можна розміщувати у будь-якій точці простору.

            Якщо ряд векторів розміщені на різних прямих у просторі (паралельних або непаралельних), то, виходячи з попередніх міркувань, можна вибрати довільну точку в просторі, наприклад , і всі дані вектори перенести паралельно самим собі так, щоб їх початки збігалися з точкою (рис.2.1).

Рис.2.1

Вектор, довжина якого дорівнює одиниці, називається одиничним.

            Очевидно, що коли дано довільний вектор , то поділивши його на його довжину , одержимо одиничний вектор, наприклад , напрямок якого збігається з напрямком вектора , тобто             Вектор, довжина якого дорівнює нулю, називається нульовим. Він не має конкретного напрямку.


2.  Лінійні операції  над векторами

            Сумою двох векторів  і називається вектор, що є діагоналлю паралелограма, побудованого на даних векторах як на сторонах паралелограма (рис.2.2).

            Оскільки вектор можна переносити паралельно самому собі, то з рис.2.2 зрозуміло, що вектор можна сумістити з відрізком ,

Рис.2.2

            тоді , а сума  Звідси випливає, що суму двох векторів можна побудувати за правилом трикутника.

            У кінці вектора  будуємо вектор і початок вектора  з’єднуємо з кінцем вектора . В результаті одержимо вектор , що дорівнює сумі векторів  і . Це правило можна узагальнити на суму довільної кількості векторів .

Для знаходження суми заданих - векторів будуємо вектор , в його кінці вектор  і т.д., в кінці вектора  будуємо вектор . Якщо тепер з’єднати початок вектора  з кінцем вектора , одержимо вектор , що дорівнюватиме сумі двох векторів. Це правило додавання векторів називається правилом многокутника.

            Якщо задано вектор , то вектор матиме ту саму довжину, що і , але оскільки напрямки цих двох векторів протилежні, то . Тому  , тобто різницю векторів завжди можна замінити сумою. Звідси випливає правило віднімання векторів.

            Щоб від вектора відняти вектор , треба до вектора додати вектор  , або, що те саме, до вектора додати вектор  з протилежним знаком.

            В результаті множення вектора на скаляр  одержується вектор , напрямок якого збігається з напрямком , якщо , і протилежний напрямку , якщо . Довжина одержаного вектора дорівнює . Очевидно, що .

            Ділення вектора на скаляр зводиться легко до множення вектора на скаляр:

            Поняття “більше”, “менше” для векторів  незастосовні. Для лінійних операцій над векторами векторів вірні такі властивості:

10. - комутативний (переставний) закон додавання;

20. - асоціативний (сполучний)закон додавання;

30. - дистрибутивний (розподільчий) закон множення;

40.

і  - скаляри (числа).

            Вираз

називається лінійною комбінацією векторів. Числа  називаються її коефіцієнтами.

            Лінійні комбінації векторів мають такі властивості: якщо вектори  колінеарні, то довільна їх лінійна комбінація їм колінеарна; якщо вектори  компланарні, то довільна їх лінійна комбінація з ними компланарна. Це випливає із того, що вектор  колінеарний а сума векторів лежить в тій же площині, що й доданки, і навіть на тій же прямій, якщо вони колінеарні.

            Приклад. Знайти вектор, що ділить кут між векторами і  пополам.

            Р о з в ’ я з о к. Відомо, що діагональ ромба ділить кути ромба пополам. Переносячи один з векторів паралельно самому собі так, щоб його початок збігався з початком другого вектора, одержимо кут . Щоб побудувати тепер ромб, поділимо кожний з векторів на свою довжину. В результаті матимемо одиничні вектори  і . Вектор, що збігається з діагоналлю ромба, в даному випадку і буде сумою цих векторів, тобто шуканий вектор матиме вигляд .

3. Проекція вектора на вісь

            Проекцією вектора на вісь  називається довжина відрізка  осі , що міститься між проекціями початкової точки  і кінцевої точки , взята із знаком “+”, якщо напрямок  збігається з напрямком осі проекції, та із знаком “-”, якщо ці напрямки протилежні.

            Легко довести основні положення теорії проекцій:

10.

(читається: проекція на вісь дорівнює …) (рис.2.3).

20.

(рис.2.4).

Рис. 2.3

.

Рис.2.4