Реферат: Абсорбция. Предотвращение источников техногенной чрезвычайной ситуации - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Абсорбция. Предотвращение источников техногенной чрезвычайной ситуации

Рефераты по безопасности жизнедеятельности » Абсорбция. Предотвращение источников техногенной чрезвычайной ситуации

ВВЕДЕНИЕ

На промышленных предприятиях приходиться осуществлять не только разделение растворов на составляющие их компонентов, но и процессы разделения газовых и паровых смесей.

Для разделения газовых и паровых смесей чаще всего используют сорбционные процессы. В основе сорбционных процессов лежит избирательная способность к поглощению отдельных компонентов смеси.

Сорбция - поглощение газов, паров и растворенных веществ твердыми телами и жидкостями. Виды сорбции:

- адсорбция;

- абсорбция;

- хемосорбция;

- капиллярная конденсация.

Адсорбция - процесс поглощения одного или нескольких компонентов из газовой смеси или раствора твердым веществом - адсорбентом.

Абсорбция - процесс поглощения паров или газов из газовых или паро-газовых смесей жидкими поглотителями - абсорбентами.

Хемосорбция - поглощение одного вещества другими, сопровождающиеся химической реакцией (поглощение аммиака водой, поглощение влаги и кислорода металлами).

Капиллярная конденсация - паров в микропористых сорбентах (она происходит вследствие того, что давление паров над вогнутым мениском жидкости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над плоской поверхностью жидкости при той же температуре).

Смесь паров или газов, направляемых на абсорбцию или адсорбцию называют абсорбтивом или адсорбтивом, а вещества используемые как поглотитель называют абсорбентом или адсорбентом.

Рекуперация - метод улавливания или выделения органических растворителей с целью их повторного использования.

Процессы абсорбции применяются для:

- извлечения ценных компонентов из газовых смесей;

- санитарной очистки выпускаемых в атмосферу отходящих газов от сернистого ангидрида;

- как основная технологическая стадия ряда важнейших производственных процессов (например: абсорбция серного ангидрида в производстве серной кислоты и т.д.).

Абсорбенты обладают свойством селективности (изберательности) (каждый абсорбент лучше всего поглощает какие-то определенные газы и пары; другие составляющие газовой смеси им не поглощаются совсем или поглощаются незначительно.

Движущей силой, обуславливающей растворение газа или пара в абсорбенте, является разность концентраций его в растворе и над жидкостью (если концентрация в газовой фазе компонента, который улавливает, больше, чем в жидкости, значит идет процесс растворения, в противном случае поглощенный компонент будет выделяться из абсорбента).

Равновестность этой системы при постоянных давлении и температуре определяется законом Генри, в соответствии с которым растворимость газа пропорциональна его парциальному давлению над жидкостью:

где: Ха - молярная концентрация газа;

y - коэфициент Генри, зависящий от свойств газа и жидкости;

Ра - парциальное давление газа над жидкостью.

Процессы абсорбции, как правило, экзотермичны. Выделяющееся тепло будет повышать температуру процесса, что вызывает снижение поглотительной способности жидкости и условия абсорбции будут ухудшаться. С повышением давления растворимость газа в жидкости увеличивается, следовательно условия абсорбции будут улучшаться. Оптимальные условия ведения процесса абсорбции:

- пониженная температура;

- повышенное давление.

Аппараты, в которых осуществляется процесс абсорбции, называется абсорберами или скруберами.

Типы абсорбентов:

- насадочные;

- тарелочные;

- барботажные;

- распыливающие, разбрызгивающие.

Конструктивно они мало чем отличаются от ректификационных колонн соответствующего типа.

Процесс обратного извлечения из абсорбента уловленного компонента (процесс десорбции) осуществляется по разному:

- из раствора - ректификацией;

- из нестойкого химического соединения - путем нагревания или окисления.


1.  Краткое описание производственного процесса

Из смеси паров и газов необходимое вещество можно выделить используя метод абсорбции. При улавливании паров этилового спирта из этилена в качестве абсорбента используется вода.

Ниже дано описание производственного процесса абсорбционной установки.

Поступающая на установку по линии 1 смесь пара и газа (этилен с парами этилового спирта) с начальным давлением 6 МПа подвергается охлаждению до температуры 10°С в водяных кожухотрубчатых холодильниках 2. Предварительное сжатие и охлаждение начальной смеси обеспечивается в последующем более эффективным улавливанием паров из смеси газов. Из холодильника 2 смесь пара и газа поступает в два последовательно соединённых абсорбера 3. Абсорберы представляют собой вертикальные цилиндрические аппараты, внутренний объём которых заполнен насадкой в виде керамических колец. В верхнюю часть последнего по ходу газа абсорбера насосом 12 подаётся регенерированный и охлаждённый в холодильнике 14 поглотитель-абсорбент - вода. Абсорбент, проходя абсорберы навстречу движению газа, поглощает из него пары бензина или спирта и в виде насыщенного раствора поступает в сборник 16. Очищенный от пара газ (природный или этилен) выходит из последнего абсорбера по линии 4 и поступает в компрессор 7, сжимается до давления необходимого для дальнейшей его переработки. Сжатый газ по линии 8 отводится из компрессорной станции.

Насыщенный абсорбент из ёмкости 16 насосом 15 подаётся на разделение (десорбцию) в ректификационную колонну 5. Перед поступлением на десорбцию абсорбент подогревается до температуры кипения в подогревателе 13. Ректификационная колонне 5 имеет колпачковые тарелки. Рабочее давление в колонне приведено в табл.1, температура в верхней части колонны равна температуре кипения удавливаемой жидкости (этилового спирта), температура в нижней части колонны равна температуре кипения применяемого абсорбента (воды). Нижняя часть колонны имеет подогреватели.

Теплоносителем подогревателей ректификационной колонны 5 и подогревателя насыщенного абсорбента 13 является водяной пар.

В ректификационной колонне 5 из абсорбента отгоняются поглощённые им из начальной смеси пары этилового спирта. Отогнанный, из абсорбента пар выходит из верхней части колонны и поступает на конденсацию к охлаждение в конденсатор-холодильник 6. Поглощённый конденсат этилового спирта с температурой 20 оС поступает в емкость ректификата 10. Из ёмкости 10 часть жидкости насосом 11 подается в качестве флегмы на орошение ректификационной колонны 5, остальная часть отводится на склад в ёмкости готовой продукции.

Все основные аппараты технологической схемы размещены на открытой площадке. Колонные аппараты (абсорберы, ректификационные колонны) и непосредственно связанные с ними аппараты, расположены на трёхэтажной, металлической этажерке, имеющей две двухмаршевые лестницы. Холодильники, подогреватели и промежуточные емкости расположены на отдельных площадках. Площадки имеют по периметру бортики высотой 15 см для защиты от растекания разлившейся жидкости.

Параметры работы аппаратов приведены в табл. 1 и 2.

Табл.1 Исходные данные об аппаратах, оборудовании и помещении

Позиция

на рис.1.

Наименование оборудования Режим работы Размеры
Р, МПа

t, оС

d или l, м h, м
1 Линия подачи на абсорбцию 0,6 20 - -
2 Холодильник газа кожухатрубчатый 0,6 10 0,8 5
3 Абсорберы 0,5 15 1,5 30
4 Линия подачи газа к компрессору 0,45 15 - -
5 Десорбер (ректификационная колонна) 0,46 170 2,5 32
6 Конденсатор-холодильник кожухотрубчатый 0,15 20 0,8 5
7 Компрессор газовый 2,4 50 - -
8 Линия сжатого газа 2,4 50 - -
9 Межступенчатый холодильник 2,4 50 - -
10 Приемник уловленного продукта 0,12 15 3 8
11 Насос центробежный для подачи орошения 0,6 15 - -
12 Насос для подачи абсорбента в холодильник 0,6 - - -
13 Подогреватель насыщенного абсорбента 0,4 170 0,8 5
14 Холодильник абсорбента 0,6 15 0,3 5
15 Насос для подачи абсорбента на ректификацию 0,4 20 - -
16 Сборник насыщенного абсорбента 0,4 20 2 6

Табл.2 Исходные данные об оборудовании, подлежащем анализу техногенной опасности

№ оборудования

исходные данные значение
абсорбер Давление, МПА 0.11

Температура среды, оС

110
Диаметр, м 2
Высота, м 24
Паровой объем, % 80
Защита от давления Нет
Средства тушения Нет

Позиция

на рис. 1

Исходные данные Последняя цифра зачетной книжки
0
Насосная станция для сжатия природного газа Ширина помещения, м 12
Длина помещения, м 24
Высота помещения, м 10
Кратность вентиляции, 1/ч 8
Скорость воздуха, м/с 0.8
Насосная станция для сжатия этилена Ширина помещения, м 18
Длина помещения, м 24
Высота помещения, м 10
Кратность вентиляции, 1/ч 6
Скорость воздуха 0.4
Общий энергетический потенциал, Е, ГДж. 90

2.  Анализ пожароопасных веществ, обращающихся в технологическом оборудовании

Сводная таблица показателей опасности, применяемых в производстве веществ

                     Вещества

Показатель

опасности

Вещества обращающиеся

в производственном процессе

 

Этилен Этиловый спирт
1 5 6

 

Агрегатное состояние Газ Жид.

 

Группа горючести Г4 Г4

 

Молекулярная масса 28.03 46.069

 

Температура плавления 0С

- -114.15

 

Температура кипения 0С

-103.7 78.39

 

Плотность г/см3

- 0.7893

 

Температура вспышки - 13

 

Стандартная энтальпия образования, кДж/моль - -234,8 (г)

 

Теплота сгорания, кДж/кг -1318 кДж/моль 281,38 (г) кДж/кг

 

Стандартная мольная теплоемкость Cp (298 К, Дж/моль·K) 1,197 (г)

 

Энтальпия плавления ΔHпл (кДж/моль) - 4,81

 

Энтальпия кипения ΔНкип (кДж/моль) 839,3

 

Температура воспламенения, 0С

-

 

Температура самовоспламенения, 0С

435 404

 

Летальная доза (ЛД50, в мг/кг) 9000

 

Нижний концентрационный предел распространения пламени 2.7 3.6

 

Верхний концентрационный предел распространения пламени 34 17.7

 

Нижний температурный предел распространения пламени, 0С

- 11

 

Верхний температурный предел распространения пламени 0С

- 41

 

Температура тления 0С

- -

 

Условия теплового самовозгорания - -

 

Минимальная энергия зажигания, мДж 0.12

 

Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и др. веществами Взрывоопасен при взаимодействии с кислородом

 

Нормальная скорость распространения пламени, м/с 0.735

 

Минимальное взрывоопасное содержание кислорода,% 10

 

Минимальная флегматизирующая концентрация флегматизатора, %

42% СО2

 

Максимальное давление взрыва 830

 

Скорость нарастания давления взрыва, МПа/с 37.7

 

Класс опасности вещества 2 3

 

Класс опасности и подкласс вещества 2.3 3.2

 

Вывод: обращающееся в технологическом процессе вещество является взрывопожароопасным, что свидетельствует о большой пожарной опасности данного процесса.


3.  Анализ системы предотвращения источников техногенной ЧС

3.1 Определение возможности образования горючей среды внутри производственного оборудования

Заключение о пожаровзрывоопасности газовоздушной смеси определяется по следующей зависимости:

Для этанола условия образования горючей среды:

Для этилена:

Внутри оборудования с жидкостью горючая среда может образоваться только при наличии в оборудовании свободного от жидкости объема (газового пространства), который сообщается с атмосферой и в той или иной степени насыщается парами жидкости.

Все оборудование (и с газовой смесью, и с жидкостью) работает под избыточным давлением, поэтому подсос окислителя в исследуемом процессе невозможен. Образование горючей смеси может происходить на стадии формирования смеси этилена и этанола и в результате неисправности оборудования, а также ошибок оператора.


3.2 Определение возможности выхода горючих и вредных веществ в воздух производственного помещения (на открытую площадку)

3.2.1 При нормальном режиме функционирования

Горючие газы, пары и жидкости выходят в производственное помещение или на открытую площадку, если технологические аппараты с жидкостями имеют открытую поверхность испарения или дыхательные устройства, при использовании аппаратов периодического действия, аппараты с жидкостями и газами имеют сальниковые уплотнения. Размеры образующихся наружных пожаровзрывоопасных зон определяются свойствами обращающихся в технологическом процессе производства веществ, количеством их, количеством веществ которое может выходить наружу за определенный промежуток времени; условиями выброса, растекания и рассеивания веществ в окружающей среде.

При нормальном режиме функционирования выход веществ наружу в производственное помещение практически невозможен при исправности всего технологического оборудования.

Как правило, на величину выходящих веществ в производственное помещение оказывает влияние и конструктивное исполнение технологического оборудования. Так, в настоящее время оно выполнено не на достаточно высоком уровне. Поэтому пары ЛВЖ будут поступать в производственное помещение и при нормальном режиме работы. В случае недостаточно хорошей работы местных отсосов будут образовываться местные взрывоопасные зоны.

3.2.2 При повреждении производственного оборудования

Большую техногенную опасность представляют аварии и аварийные ситуации, при которых горючие вещества (жидкости, газы) выходят в производственное помещение или на открытую площадку, растекаются и рассеиваются по окрестности, образуя пожаровзрывоопасные зоны за пределами технологического оборудования.

Последствия повреждения или аварии будут зависеть от:

-  размеров аварии;

-  пожароопасных свойств веществ, выходящих наружу;

-  давления и температуры в аппарате.

При эксплуатации производственного оборудования возможно повреждение сальников, прокладок материала корпуса, полное разрушение аппаратов.

Если в поврежденных аппаратах находятся жидкости нагретые в условиях производства, то возможно:

-  воспламенение веществ, если они нагреты в условиях производства выше температуры самовоспламенения;

-  образование ВОК, если выходящие из аппарата вещества нагреты ниже Тсам, но выше t всп.

Повреждения аппаратов и трубопроводов могут быть:

-  местными (локальными);

-  полными.

В первом случае через образовавшееся отверстие почти под постоянным давлением продукт в виде струй пара, газа или жидкости будет выходить наружу, а во втором - все содержимое аппарата сразу выйдет наружу и кроме того, будет продолжаться истечение газа или жидкости из соединенных с ним трубопроводов.

При авариях и повреждениях аппаратов и трубопроводов из них выходят горючие газы, пары или жидкости, что приводит к образованию пожаровзрывоопасных смесей не только у мест утечки, но и во всем производственном помещении, даже на открытых площадках.

 


3.2.2.1 Повреждения технологического оборудования в результате механического воздействия

В результате механических воздействий на материал аппарата будут воздействовать сверхнормативные внутренние напряжения, которые могут вызвать не только образование не плотностей в швах и соединениях, но и его взрыв. Высокие внутренние напряжения возникают при повышенном давлении в аппаратах, а также в результате нагрузок динамического характера.

Повышенные давления, которые приводят к повреждению аппаратов могут возникать в результате:

  I.Нарушения материального баланса работы аппарата, скорости и очередности подачи компонентов.

Нарушение материального баланса происходит при несоответствии производительности работы насосов (11,12,15) и компрессоров (7), принятой интенсивности заполнения аппаратов, в случае неправильного соединения аппаратов, которые работают с разным давлением, при увеличении сопротивления в дыхательных линиях, отсутствия или неисправности автоматики регулирования, подачи и отвода веществ.

  II.Нарушений температурного режима работы аппарата.

Нарушений температурного режима происходит при отсутствии или неисправности контрольно-измерительных приборов, недосмотра персонала, а в отдельных случаях от действия лучистой энергии соседних аппаратов и даже от повышения температуры окружающей среды. Особенно опасно нарушение температурного режима для переполненных аппаратов.

  III.Нарушений процесса конденсации паров (холодильники 2,14,6)

Нарушение процесса конденсации паров происходит в результате:

1.  уменьшения или полного прекращения подачи хладагента;

2.  подачи хладагента с более высокой начальной температурой;

3.  сильного загрязнения теплообменной поверхности аппарата.

  IV.Попадания в высоконагретые аппараты жидкостей, с низкой температурой кипения (десорбер 5,подогреватель абсорбента 13)

Жидкости с низкой температурой кипения могут попасть в аппарат: с продуктом, подаваемым в аппарат; через неплотности теплообменной поверхности; при неправильном переключении линий; в виде конденсата из паровых и продувных линий.

  V.Нарушений режима работы аппарата с экзотермическим процессом.

Это происходит при несвоевременном отводе излишек тепла в реакции, нарушениях соотношений реагирующих веществ, увеличении количества подаваемого катализатора или инициатора, при несвоевременном отводе из реактора излишек газообразных продуктов реакции, образовании пробок в линиях стравливания и отвода веществ.

  VI.Действие на материал аппаратов и трубопроводов нагрузок динамического характера

Основные причины возникновения динамических нагрузок:

а) резкое изменение давления в аппаратах и трубопроводах:

-  в момент пуска аппаратов в эксплуатацию;

-  в момент остановки аппарата;

-  при грубых нарушениях установленного режима температуры и давления;

б) гидравлический удар.

Гидравлический удар возможен при:

-  быстром закрытии и открытии задвижек на трубопроводах;

-  больших пульсациях веществ, подаваемых насосами;

-  резком изменении давления на каком-либо дальнем трубопроводе;

в) вибрации аппаратов и трубопроводов.

Вибрации возникают:

-  у недостаточно закрепленных трубопроводов, которые работают под давлением;

-  в аппаратах, соединенных с поршневыми насосами и компрессорами;

-  в аппаратах, установленных вблизи работающих агрегатов;

-  у недостаточно закрепленных аппаратов.

VII. Эрозии материалов аппаратов и трубопроводов

Эрозия – механический износ материала перемещаемой средой. Эрозия металлов происходит при обтекании конструкций потоком твердых, жидких или газообразных частиц или при электрических разрядах. Эрозия бывает газовая, абразивная, кавитационная, электрическая, ультразвуковая. В результате эрозии уменьшается толщина стенок аппаратов, трубопроводов, что приводит к возникновению опасных напряжений в них даже при нормальном ведении технологических процессов.

3.2.2.2 Повреждения технологического оборудования в результате температурного воздействия

При эксплуатации производственного оборудования неплотности и повреждения могут возникать в результате действия температур. Температуры могут привести к образованию непредусмотренных расчетом температурных напряжений в материале стенок аппарата, а также изменить механические свойства металла.

Температурные напряжения, как правило, возникают:

-  при резких изменениях рабочей температуры аппарата или внешней среды;

-  под влиянием неравномерного влияния действия температур на жестко закрепленные конструкции и узлы аппаратов;

-  при наличии в аппаратах элементов, которые находятся под действием разных температур;

-  в толстостенных конструкциях.

Воздействие высоких температур на материал аппарата (металл) может привести к возникновению пластических деформаций, а низких – снизить ударную вязкость.

3.3 Определение возможности образования в горючей среде (или внесения в нее) источников зажигания, инициирования взрыва

3.3.1 Источники зажигания от открытого огня, искр и нагретых поверхностей

В условиях производства для данного технологического процесса характерными могут быть следующие источники зажигания:

-  подогреватель насыщенного абсорбента;

-  факелы и паяльные лампы, используемые для отогрева различных коммуникаций;

-  малокалорийные источники зажигания (тлеющий окурок).

-  высоконагретые продукты и поверхность конструкции;

3.3.2 Источники зажигания от теплового проявления механической энергии

В производственных условиях наиболее распространенными источниками зажигания от теплового проявления механической энергии являются:

-  удары твердых тел с образованием искр;

-  поверхностное трение тел;

Удары твердых тел.

При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называются искрами удара или трения. Искры представляют собой нагретые до высокой температуры частицы металла или камня размером от 0.1 до 0.5 мм. и более. Температура искры достигает в среднем 1550ОС. Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т.к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Воспламеняющая способность искры, находящаяся в покое, выше летящей, т.к. неподвижная искра медленней охлаждается, она отдает тепло одному и тому же объему горючей смеси, а следовательно нагреть до более высокой температуры.

В условиях производства наиболее часто искры образуются при:

-  работе ударным инструментом (молотки, зубила, ломы и т.д.);

-  удары алюминиевых тел о стальную окисленную поверхность

,

Искры, образующиеся при попадании в машины металла или камней.

Образование искр такого происхождения возможно в:

-  аппаратах центробежного действия (насосы, компрессоры).

Искры, образующиеся при ударах подвижных механизмов машин об их неподвижные части.

Искры такого происхождения возникают при:

-  - неправильной регулировки зазоров;

-  - изнашивании подшипников;

-  - перекосах оборудования;

Источники зажигания по причине тепла трения.

Всякое перемещение соприкасающихся друг с другом тел требует затрат энергии на преодоление работы сил трения. Эта энергия в основном превращается в теплоту.

При нормальных условиях выделяющееся тепло своевременно отводится и этим обеспечивается нормальные температурный режим.

Причина роста температуры:

-  увеличение количества выделяющегося тепла;

-  уменьшение теплоотвода.

По этим причинам возможен перегрев подшипников.

Причины перегрева подшипников:

-  отсутствие смазки;

-  чрезмерная затяжка;

-  перекосы;

-  перегрузка валов;

-  загрязнение поверхности отложениями, уменьшающими теплоотвод.

3.3.3 Источники зажигания от теплового проявления электрической энергии

Пожары от электроустановок могут происходить как при их нормальной работе, так и при неисправностях. При нормальной работе - неправильный выбор по условиям работы (без учета категории и группы взрывоопасной смеси и характера окружающей среды) электроустановок. При аварийных режимах вызванных несоответствием электрооборудования номинальным токовым нагрузкам, перегрузкой электрических и сетей и электродвигателей, короткими замыканиями и большими переходными сопротивлениями.

Причинами пожаров так же могут быть разряды статического и атмосферного электричества.

3.3 Определение условий, способствующих распространению пожара

а) скопление значительного количества горючих веществ и материалов в помещениях и на открытых площадках, превышающих установленные нормы;

б) наличие развитой системы вентиляции, а также отсутствие или неисправность огнезадерживающих и обратных клапанов, шиберов и заслонок в системах вентиляции;

в) наличие технологических коммуникаций (производственная канализация, технологические трубопроводы, транспортерные линии, пневмотранспорт);

г) аварии аппаратов и трубопроводов, сопровождающиеся разливом ЛВЖ, и загазованностью помещений, установок;

д) наличие незащищенных технологических и других проемов в перекрытиях, стенах, перегородках;

е) отсутствие или неисправность:

-  автоматических установок обнаружения и тушения пожаров;

-  средств связи;

-  противопожарного водоснабжения;

-  аварийного слива жидкостей из производственного оборудования;

-  первичных средств пожаротушения;

ж) появление на пожаре внезапных факторов (взрыв аппарата, выбросы, обрушение конструкций и т.д.);

з) несоответствие противопожарных расстояний.

По производственным коммуникациям пожар будет распространятся в тех случаях, если внутри трубопроводов, воздуховодов, траншей, туннелей или лотков образовалась горючая среда, когда трубопроводы с этой горючей средой работают неполным сечением, если в системе заводской канализации на поверхности воды имеется слой горючей жидкости, когда имеются горючие отложения на поверхности труб, каналов и воздуховодов, если в технологической системе находятся газы, газовые смеси или жидкости, способные разлагаться с воспламенением под воздействием высокой температуры или давления. Огонь может также распространяться по транспортерам, элеваторам и другим транспортным устройствам, через не защищенные технологические проёмы в стенах, перегородках и перекрытиях.


4. Определение параметров поражающих факторов источников техногенной ЧС

4.1 Определение относительного энергетического потенциала блока

Относительный энергетический потенциал характеризует запас энергии в технологическом блоке, который может быть реализован при взрыве определяется по формуле

  

где:

E - общий энергетический потенциал (кДж).

Условная масса горючих веществ определяется как отношение общего энергетического потенциала к единой теплоте сгорания большинства углеводородов по формуле (14).

,

Категория взрывоопасности блока II.

4.2 Определение параметров поражающих факторов источников техногенной чрезвычайной ситуации для десорбера 5

Поражающий фактор источника техногенной ЧС - составляющая опасного происшествия, характеризуемая физическими, химическими и биологическими действиями или проявлениями, которые определяются или выражаются соответствующими параметрами

При оценке поражающих воздействий факторов источников техногенной чрезвычайной ситуации определяют:

а) массу веществ вышедших при аварии;

б) площадь аварийного разлива жидкостей;

в) размеры зон ограниченных НКПРП;

г) избыточное давление взрыва;

д) величину плотности теплового потока;

е) размеры зон возможных разрушений и травмирования персонала;

ж) глубину зоны заражения вредных веществ;

з) продолжительность поражающего действия вредных веществ.

В виду того, что оборудование располагается на открытой площадке, определяем горизонтальные размеры зон, ограничивающие паровоздушные смеси с концентрацией горючего выше НКПР возле десорбера:

  (1)

                         (2)

где

m п - масса паров ЛВЖ, поступивших в открытое пространство за время полного испарения, но не более 3600 с, кг;

rГ.П. - плотность паров ЛВЖ при расчетной температуре и атмосферном давлении, кг×м-3;

Рн - давление насыщенных паров ЛВЖ при расчетной температуре, кПа;

К - коэффициент, принимаемый равным К = Т/3600 для ЛВЖ;

Т - продолжительность поступления паров ЛВЖ в открытое пространство, с;

Снкпр - нижний концентрационный предел распространения пламени паров ЛВЖ, % (об.);

М - молярная масса, кг×кмоль-1;

V0 - мольный объем, равный 22,413 м3×кмоль-1;

tр - расчетная температура, °С.

        (3)

где А, В, СА - коэффициенты Антуанна (определяются по справочной

литературе );

 tж – температура жидкости.

Т – время испарения жидкости, с.

Длительность испарения жидкости принимается равной  времени ее полного испарения, но не более 3600 с.

Массу паров ЛВЖ принимаем равной массе этанола в десорбере, учитывая, что весь этанол находится в паровой фазе и занимает 80% объема десорбера.

где  плотность паров ЛВЖ, ;

V – объем газовой смеси десорбера, содержащей этанол, м3;

mп – масса паров ЛВЖ, кг;

P – давление в десорбере, кПа;

Va – объем десорбера, м3;

0.8 – коэффицент, учитывающий паровое пространство.


;

где D – диаметр десорбера, м;

h – высота десорбера,м.

Определяем расчетное избыточное давление на расстоянии 30м от десорбера:

где Ро - атмосферное давление, кПа (допускается принимать равным 101 кПа);

r - расстояние от геометрического центра газопаровоздушного облака, м;

mпр - приведенная масса газа или пара, кг, вычисляется по формуле

                                            (4)

где Qсг - удельная теплота сгорания пара, ;

Z - коэффициент участия горючих газов и паров в горении, который допускается принимать равным 0,1;

Qо - константа, равная ;

т - масса горючих паров, поступивших в результате аварии в окружающее пространство, кг.


5. Определение категории помещения по взрывопожарной и пожарной опасности, класса взрывоопасной зоны

Т.к. горизонтальный размер зоны, ограничивающей газопаровоздушные смеси с концентрацией горючего ниже нижнего концентрационного предела распространения пламени (НКПР) меньше 30 м и расчетное избыточное давление при сгорании паровоздушной смеси на расстоянии 30 м от наружной установки меньше 5 кПа, то наружная установка относится к категории Вн.

В виду того, что образование взрывоопасных концентраций возможно при аварии, то согласно п.7.3.43 ПУЭ, класс зоны возле десорбера - В-1г.


6. Разработка мероприятий по снижению техногенной опасности производственного процесса

6.1 Требования к теплообменным процессам и аппаратам (холодильникам, конденсаторам)

1)  Перед пуском в работу теплообменников необходимо провести их внешний осмотр, проверить исправность контрольно-измерительных или регулирующих приборов, арматуры, теплоизоляции, проверить состояние площадок под аппаратами. Не допускается загрязнение площадок горючими веществами.

2)  Разогрев (при пуске) и охлаждение (при остановке) теплообменников должны производиться плавно, во избежание повреждения от температурных напряжений.

3)  Необходимо следить за подачей хладоагента (захоложенной воды, рассола, сжиженного газа) в холодильники-конденсаторы. При прекращении подачи хладоагента процесс необходимо остановить.

4)  При эксплуатации теплообменников необходимо осуществлять контроль за содержанием горючих веществ в негорючем теплоносителе. Периодичность контроля должна быть указана в производственной инструкции.

5)  Не допускается снижение уровня нагрева горючей жидкости в аппаратуре и оголения поверхности теплообмена во избежание ее перегрева.

6)  Необходимо соблюдать установленную периодичность контроля за состоянием трубок, трубной доски и межтрубного пространства кожухотрубных теплообменников. Отглушение неисправных трубок не должно влиять на нормируемые параметры технологического процесса.


6.2 Требования к процессам ректификации, абсорбции и адсорбции горючих смесей

1.  Ректификационные колонны и абсорберы перед пуском должны быть осмотрены, проверена исправность и готовность к работе всех связанных с ними аппаратов и трубопроводов, исправность контрольно-измерительных приборов, регуляторов температуры и давления в колонне, измерителей уровня жидкости в нижней части колонны, приемниках ректификата, рефлюксных емкостях и емкостях остатка.

2.   При разгонке низкокипящих растворов и сжиженных газов во избежание образования ледяных и кристаллогидратных пробок необходимо контролировать количество влаги в сырье, подавать соответствующий растворитель в места, где систематически наблюдается отложение льда, или осуществлять обогрев этих мест.

3.  Герметичность вакуумных колонн и связанных с ними аппаратов контролируется, как правило, автоматически по содержанию кислорода в парогазовой фазе после вакуумных насосов или вакуум-эжектора. При отсутствии стационарных приборов, осуществляется лабораторный контроль с периодичностью, определенной в производственных инструкциях. При падении вакуума ниже предельно допустимой нормы в колонну должен быть подан инертный газ и приняты меры по остановке процесса.

4.  Приборы автоматического контроля уровня жидкости в сепараторах должны быть в исправном состоянии. При отсутствии стационарных приборов, должен осуществляться лабораторный контроль с периодичностью, определенной в производственных инструкциях.

5.  На открытых установках в зимнее время спускные и дренажные линии, а также участки трубопроводов подачи замерзающих жидкостей (воды, щелочи и других жидкостей) должны иметь исправное утепление.


6.3 Требования к процессам сжатия горючих газов

1.  При эксплуатации компрессоров должны соблюдаться требования “Правил устройства и безопасной эксплуатации поршневых компрессоров, работающих на взрывоопасных и токсичных газах” и настоящих Правил.

2.  При сжатии ГГ необходимо обеспечить герметичность уплотняющих устройств, исправность блокировки, обеспечивающей остановку компрессора при падении давления в системе гидравлического уплотнения ниже предельно допустимого. При обнаружении пропуска газа компрессор должен быть остановлен и неисправность устранена.

3.  Системы смазки механизма движения цилиндров и сальников должны иметь исправные блокировки по остановке двигателя компрессора при падении давления в системе смазки ниже допустимого.

4.  Для предотвращения отложений в трубопроводах продуктов разложения масла и их возгорания не допускается превышать нормы расхода масла, установленные регламентом.

5.  Необходимо регулярно очищать клапанные коробки и клапаны воздушных поршневых компрессоров от масляных отложений и нагара.

6.  Не допускается работа компрессора с искрением на контакте запальной свечи у газомотора, а также проверка наличия искры у свечи в компрессорной.

7.  Не допускается очистка компрессорного оборудования и трубопроводов от масляного конденсата и продуктов разложения масла выжиганием.

8.  Газомоторные компрессоры должны быть оборудованы исправными автоматическими отсекателями топливного газа, срабатывающими при понижении давления в приемной линии компрессора ниже допустимой величины.


6.4 Требования к процессам транспортирования ЛВЖ, насосному оборудованию

1. Для транспортирования ЛВЖ следует применять центробежные бессальниковые насосы.

2.  Насосы, транспортирующие ЛВЖ, должны иметь исправное дистанционное отключение из безопасного места.

3.  Не допускается включать в работу горячие резервные насосы без предварительного их прогрева.

4.   Затворная жидкость уплотняющих устройств, применяемая для обеспечения герметичности насосного оборудования должна быть инертной к перекачиваемой среде.

5.  При работе насосов необходимо следить за смазкой трущихся частей и температурой подшипников. Не допускается работа насосов с температурой подшипников выше предусмотренной паспортными данными и наличием под насосами пролитого смазочного масла и продуктов.

6.  Производить ремонт на работающих насосах и заполненных трубопроводах не допускается.

7.  Во избежание гидравлического удара и возможного разрушения не допускается резко увеличивать или уменьшать число оборотов центробежных насосов, а также число ходов поршня поршневых насосов.


ЛИТЕРАТУРА

·  ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования».

·  ГОСТ 12.1.044-89 «Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения».

·  СТБ 11.0.02-95 «Система стандартов пожарной безопасности. Пожарная безопасность. Общие термины и определения».

·  НПБ 5-2000 «Категории помещений, зданий и наружных установок по взрывопожарной и пожарной опасности».

·  Алексеев М.В. и др. Пожарная профилактика технологических процессов производств. – М, 1986.

·  Алексеев М.В. Основы пожарной профилактики технологических процессов производств. – М, 1972.

·  Справочник. Пожаровзрывоопасность веществ и материалов и средств их тушения. Ч. 1, 2. М.; Химия, 1990.

·  М.В. Алексеев «Пожарная профилактика технологических процессов производства», ВИПТШ, Москва, 1986 г.

·  Методическое указание к выполнению расчетно-графической работы «аналитическая оценка вероятности возникновения источников техногенной чрезвычайной ситуации», КИИ МЧС РБ, Минск, 2001.

·  «Пожароопасность веществ и материалов и средство их тушения», Химия, Москва, 1980 г.

·  ППБ РБ 1.01-94 «Общие правила пожарной безопасности РБ для примышленных предприятий», Минск, 1995г.

·  ППБ 2.08-2000 ППБ для химических, нефтехимических, нефтеперерабатывающих производств.