Автоматизация процесса спекания аглошихты

Рефераты по технологии » Автоматизация процесса спекания аглошихты

МІНІСТЕРСТВО ОСВІТИ УКРАЇНИ

ПРИАЗОВСЬКИЙ ДЕРЖАВНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ

ФАКУЛЬТЕТ Інженерно-педагогічний

КАФЕДРА АТП і В

СПЕЦІАЛЬНІСТЬ 7.0925.01 Автоматизоване управління

технологічними процесами і виробництвами

ПОЯСНЮВАЛЬНА ЗАПИСКА

ДО ДИПЛОМНОГО ПРОЕКТУ

НА ТЕМУ:

АСУ ТП процессом спікання агломераційної шихти

в умовах аглофабрики ВАТ ММК ім. Ілліча

СТУДЕНТ __________________________________Цуканова О.А.

КЕРІВНИК ПРОЕКТУ _______________________Щербаков С.В.

КОНСУЛЬТАНТИ:

З ЕКОНОМІКИ

І ОРГАНІЗАЦІЇ ВИРОБНИЦТВА______________Кліменко О.Ю.

З ОХОРОНИ ПРАЦІ_________________________Данілова Т.Г.

З ЦИВІЛЬНОЇ ОБОРОНИ____________________Шоботов В.М.

З НОРМОКОНТРОЛЮ______________________Черкашина Н.В.

РЕЦЕНЗЕНТ_______________________________Шевчук І.Ю.

ПРОЕКТ РОЗГЛЯНУТИЙ КАФЕДРОЮ І ДОПУЩЕНИЙ

ДО ЗАХИСТУ В ДЕК Протокол №______________________________

ЗАВІДУВАЧ КАФЕДРОЮ______________________Гулаков С.В.

МАРІУПОЛЬ 2002 р.

РЕФЕРАТ

Пояснительная записка: с. рис. табл. приложений источников.

Объект исследования - процесс спекания агломерационной шихты в условиях аглофабрики ОАО «ММК им. Ильича».

В пояснительной записке рассматриваются вопросы автоматизации участка спекания агломерационного цеха «ММК им. Ильича». Описывается состояние автоматизации в агломерационном производстве на данный момент времени. Литературный обзор содержит информацию о состоянии автоматизаци процесса спекания на различных комбинатах и предприятих черной металлургии перспективные решения различных проблем и новые технологии. Создание АСУ ТП невозможно без тщательного изучения технологического процесса поэтому вначале пояснительной записки рассматривается технологический процесс спекания и конструкция агломашины. На основании рассмотрения автоматизируемых параметров рассматриваются задачи автоматизации и проектируется система АСУ ТП. В процессе проектирования разрабатывается структурная схема автоматизации выбираются технические средства для контроля и регулирования параметров агломашины разрабатывается функциональная схема автоматизации. Проектируется оптимальное расположение технических средств на щитах монтажно-коммутационные и принципиально-электрические схемы подключения приборов.

В специальной части пояснительной записки предложена математическая модель спекания агломерационной шихты реализуемая на ЭВМ позволяющая быстро и с минимальными затратами исследовать влияние ведущих параметров процесса спекания (высоты слоя шихты содержания углерода и влаги в шихте скорости движения спекательных тележек и др.) на его технико-экономические показатели и может быть исполь­зована в качестве информационной части в АСУ агломерацион­ным производством для оптимизации технологического процес­са.

АВТОМАТИЗАЦИЯ АГЛОМЕРАЦИОННАЯ МАШИНА ФУНКЦИОНАЛЬНАЯ СХЕМА КОНТУР УПРАВЛЕНИЯ ТЕХНИЧЕСКИЕ СРЕДСТВА МИКРОКОНТРОЛЛЕР МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Содержание

стр.

Введение . . . . . . . . . . . 7

1 Литературный обзор существующих систем управления

процессом спекания агломерата . . . . . . . 9

2 Описание технологического процесса . . . . . . 14

2.1 Производственные операции осуществляемые на аглофабрике . 14

2.2 Характеристика и конструкция агломашины . . . . 20

2.3 Процесс спекания агломерата на агломашине . . . . 21

3 Процесс спекания – как объект автоматического управления . . 24

3.1 Задачи управления процессом спекания . . . . . 29

4 Структура АСУТП процессом спекания на аглофабрике . . . 31

4.1 Обоснование выбора АСУТП . . . . . . . 31

4.2 Описание выбранной системы АСУ . . . . . 31

5 Функциональная схема АСУ ТП . . . . . . . 35

6 Специальная часть диплома . . . . . . . . 41

6.1 Разработка контура регулирования температуры в зажигательном

горне . . . . . . . . . . . 41

6.2 Разработка контура регулирования законченностью процесса

спекания . . . . . . . . . . 42

6.3 Разработка контура регулирования соотношением «топливо-воздух» 42

6.4 Проектирование принципиальной электрической схемы контура

регулирования соотношением «топливо-воздух» . . . 43

6.5 Проектирование щита КИПиА контура регулирования

соотношением «топливо-воздух» . . . . . . 44

6.6 Проектирование монтажно-коммутационной схемы контура

соотношением «топливо-воздух» . . . . . . 45

6.7 Математическая модель . . . . . . . 45

6.7.1 Разработка детерминированной математической модели . 45

6.7.2 Выбор входных и выходных параметров . . . . 52

7 Охрана труда . . . . . . . . . . 53

7.1 Расчет воздухообмена в помещении отдела АСУ ТП участка

спекания аглофабрики . . . . . . . . 54

7.2 Расчет искусственного освещения помещения отдела АСУ ТП . 56
7.3 Расчет защитного зануления корпуса электроустановки . . 60

7.4 Пожарная безопасность помещения отдела АСУ ТП . . . 62

8 Гражданская оборона . . . . . . . . .

8.1 Основные положения . . . . . . . .

8.2 Задание . . . . . . . . . .

8.3 Исследование радиационной обстановки на объекте . . .

8.4 Мероприятия по повышению устойчивости работы аглофабрики

при радиоактивном заражении . . . . . . .

9 Организация производства . . . . . . . .

9.1 Организация и планирование работ по текущей эксплуатации

и ремонту средств автоматизации . . . . . .

9.2 Расчет годового фонда времени рабочих . . . . .

9.3 Определение штата слесарей обслуживающих систему контроля

и автоматического регулирования . . . . . .

9.4 Организация ремонтных работ и работ по поверке приборов .

9.5 Расчет капитальных затрат связанных с внедрением АСУ ТП .

9.6 Затраты на материалы и запчасти . . . . . .

9.7 Расчет фонда заработной платы . . . . . .

9.8 Затраты на текущий ремонт КИП и А . . . . .

9.9 Прочие цеховые расходы . . . . . . .

9.10 Амортизационные отчисления . . . . . .

9.11 Энергетические затраты . . . . . . .

9.12 Экономическая эффективность предлагаемой системы

автоматизации . . . . . . . . .

9.13 Технико-экономические показатели . . . . .

Заключение . . . . . . . . . . .

Приложение А. Текс программы . . . . . . .

Приложение Б. Спецификация средств измерения . . . .

введение

Агломерация впервые была применена в цветной металлургии для спекания сернистых и медных руд а также руд содержащих свинец и цинк. Агломерация в промышленном масштабе развивалась на основе двух методов: продувкой воздуха через шихту и просасыванием воздуха.

Первые машины для непрерывного спекания руд были разработаны в результате ряда опытов Дуайтом и Ллойдом и были установлены в 1907 г. на заводах в Перу и Америке. В дальнейшем были разработаны и применены машины трех типов: барабанная горизонтальная круглая и ленточная с прямолинейным движением. Опыт эксплуатации подтвердил целесообразность применения последних в результате чего началось их усовершенствование и развитие агломерации железных руд.

Современное агломерационное производство представляет собой сложную систему различных аппаратов действующих в разных режимах и выполняющих различные функции.

Непрерывный рост производства агломерата повышение требований к его качеству а также поточность технологических процессов создали условия для широкого внедрения средств автоматического контроля и управления.

Комплексной автоматизации агломерационного производства уделяется большое внимание. Значительное место в технологической схеме агломерационного производства занимают процессы связанные со спеканием шихты одной из основных операций определяющих качество агломерата.

Основная задача автоматизации агломерационного производства состоит в обеспечении максимальной производительности агломерационных машин и заданного качества агломерата. Одновременно автоматизация позволяет решать задачи повышения уровня организации производства оперативности управ-ления технологическими процессами и в целом повышения экономической эффективности производства. Одним из важнейших направлений совер-шенствования управления является создание автоматизированных систем с применением вычислительной техники.

Автоматизированная система управления спекательным отделением является качественно новым этапом комплексной автоматизации и призвана обеспечить существенное увеличение производительности труда улучшение качества выпускаемой продукции и других технико-экономических показате-лей агломерационного производства.

Автоматическое управление в спекательном отделении заключается в автоматическом поддержании высоты слоя аглошихты загружаемой на машину контроле и автоматическом регулировании процессом зажигания шихты контроле температуры зажигания горна регулирование законченности процесса спекания в конце активного участка аглошихты.

Особенностью построения АСУ является системный подход ко всей совокупности металлургических энергетических и управленческих вопросов. Специалист по АСУ ТП должен владеть теорией автоматического управления разбираться в конструкции металлургических агрегатов и основах технологии достаточно свободно ориентироваться в работе цифровых вычислительных машин их математическом и алгоритмическом обеспечении уметь правильно применять технические средства информационной и управляющей техники.

В АСУ ТП воплощены достижения локальной автоматики систем централизованного контроля электронной и вычислительной техники. Кроме того АСУ ТП производят общую централизованную обработку первичной информации в темпе протекания технологического процесса после чего информация используется не только для управления этим процессом но и преобразуется в форму пригодную для использования на выше стоящих уровнях управления для решения оперативных и организационно-экономических задач.

Внедрение АСУ ТП как и любое нововведение связано с определенными трудностями и затратами. На этапе освоения проявляются недостатки отдельных элементов вычислительного комплекса погрешности примененных алгоритмов управления недостаточная адаптация персонала к условиям работы с помощью вычислительной техники и другое.

При подготовке объекта к внедрению АСУ ТП была проведена работа по модернизации: усовершенствован пульт ручного управления на агломашине контрольно-измерительные приборы заменены токовыми для измерения давления разрежения расхода воды и газа применены датчики типа «Сапфир».

Целью данного дипломного проекта является разработка современной АСУ ТП процессом спекания шихты аглофабрики ОАО «ММК им.Ильича» с использованием технических средств на базе программируемых микроконтроллеров и персональных компьютеров (рабочих станций). Разработка структурной функциональной схем и на их основе принципиально-электрической и монтажно-коммутационной проектирование щитов КИПиА. Разработка модели спекания агломерационной шихты на агломашине и исследование влияния различных параметров на процесс спекания. Рассматриваются также вопросы по гражданской обороне охране труда и технико-экономической эффективности.

1 литературный обзор существующих

систем автоматизации процесса

спекания агломерата

Непрерывный рост производства агломерата повышение требований к его качеству а также поточность технологических процессов создали условия для широкого внедрения эффективных средств автоматического контроля и управления и поставили задачу дальнейшего повышения уровня автоматизации. Автоматическое управление внедряют практически на всех участках аглофабрики. Автоматизируются процессы транспортировки дозирования и загрузки шихтовых материалов получают развитие новые более совершенные способы контроля и управления процессами зажигания и спекания агломерационной шихты.

Применение АСУ ТП повышает оперативность управления агломерационным процессом [1] обеспечивает рациональное его ведение и облегчает труд агломератчиков. Благодаря повышению прочности агломерата уменьшается выделение пыли и улучшается экологическая обстановка в производстве что немаловажно.

На современном этапе автоматизации агломерационного процесса применяются стабилизирующие системы управления процессами агломерации выполняющие следующие функции: обеспечение непрерывного потока шихты стабилизации режима возврата регулирование влажности шихты стабилизации места окончания процесса спекания оптимизации процесса спекания стабилизации химического состава и физических свойств агломерата.

Результаты промышленной эксплуатации [2] подтвердили техническую и экономическую целесообразность применения микропроцессорного вычислительного комплекса для АСУ ТП нижнего и среднего уровня в агломерационном производстве. В настоящее время в НПО «Днепрчерметавтоматика» ведется работа по созданию АСУ агломашины №4 НЛМК. Предусмотрено значительное расширение информационных функций модернизация технических средств алгоритмов и критериев управления агломерационным персоналом.

В АО «Западно-Сибирский металлургический комбинат» [3] была использована имитационная модель агломерации которая позволяла совершенствовать технологию двухслойного спекания шихты применительно к условиям и особенностям работы аглофабрики ЗСМК. На основании анализов на фабрике ЗСМК был разработан усовершенствованный алгоритм регулирования коэффициента распределения топлива по высоте слоя. В настоящее время разработанный алгоритм регулирования реализован на 3-х агломашинах ЗСМК. Наибольшая эффективность его использования может быть достигнута при внедрении АСУ шихтовым отделением и локальной системы автоматического дозирования топлива по слоям.

По техническому заданию института ВНИИМТ и по проекту Казгипромеза на агломашине АКМ-312 Карагандинского металлургического комбината [4] смонтирована и с января 1995 года эксплуатируется установка по утилизации тепла выделяемого в процессе охлаждения агломерата. Установка отбирает горячий воздух из-под укрытия головной части линейного охладителя ОП-315 и подает воздух двумя индивидуальными нитками в горн и в слой за горном. Установка снижает выбросы пыли в атмосферу и улучшает условия труда обслуживающего персонала. Несмотря на незавершенность теплоизоляции и нестабильность работы аглоцеха эксплуатация установки с учетом возмещения затрат на её сооружение оказалась рентабельной снизился расход газа и твердого топлива.

Для создания совершенной системы автоматического управления ходом аглопроцесса [5] необходимо найти надежные методы количественной оценки связей между основными технологическими параметрами работы агломерационных машин.

При выборе входных и выходных параметров необходимо иметь в виду многонаправленность связей однако это не всегда принимается во внимание. Целью исследования было установление более надежных количественных связей между входными и выходными параметрами работы удлиненных агломашин аглофабрики №4 Магнитогорского металлургического комбината и разработка на их основе рекомендаций по управлению работой зоны охлаждения аглоспека и оперативному изменению содержания углерода и влаги в шихте.

В Донецком политехническом институте в 1990 году исследовался вопрос оптимизации агломерационного процесса [6]. В задачу исследования входила оценка возможности статической оптимизации агломерационного процесса на основе выбора наиболее эффективных параметров идентификации объекта с помощью которых с достаточной для практики точностью можно получить управляющую модель оптимизации а также технической реализации предлагаемой оптимизации.

Непременным условием реализации предложенного метода оптимизации аглопроцесса является контроль и стабилизация основных технологических параметров.

Реализация активных схем поиска экстремальных значений технологических параметров (производительности состава агломерата и т.д.) агломерационного процесса в полном объеме достаточно сложна.

Предложенный алгоритм обладает новизной и может быть рекомендован к внедрению на строящихся или реконструируемых аглофабриках.

Испытанная частично практикой эффективность работы локальных систем стабилизации теплового режима аглопроцесса на аглофабриках Енакиевского металлургического завода и Коммунарского металлургического комбината [7] позволила предопределить последовательность задач создания структур оперативного контроля и регулирования: система контроля основных технологических показателей агломерационного процесса; система распознания основных причин нарушения нормального хода аглопроцесса; алгоритм управления аглопроцессом с целью получения максимума производительности и стабилизации содержания оксида железа (II) в агломерате и его механической прочности на базе стабилизации основных технологических факторов хода аглопроцесса. Алгоритм обладает преимуществами по сравнению с известными и может быть рекомендован для вновь строящихся или реконструируемых аглофабрик.

На днепровском металлургическом заводе им. Дзержинского [8] был введен в эксплуатацию прибор для автоматической и наиболее точной регистрации освещённости в вакуум-камерах над которыми заканчивается процесс спекания. Принцип действия разработанного прибора основан на поглощении приемниками энергии инфракрасного излучения раскаленных частиц агломерата.

На аглофабрике №1 днепровского завода им. Дзержинского прошел испытания прибор [8] служащий датчиком для автоматического измерения и регулирования разрежения по вакуум-камерам. В основу разработанного прибора положен емкостный метод измерения неэлектрических величин.

На аглофабрике завода «Азовсталь» на основании проведенных исследований и анализа существующих систем автоматического регулирования скорости агломерационной машины как функции законченности процесса спекания [8] установлено что эти системы неустойчивы и имеют колебательный характер регулирования.

Предлагаемая институтом автоматики система двойного регулирования агломерационной машины устраняет недостатки присущие системам регулирования по параметрам характеризующим законченность процесса спекания. Указанная система предусматривает регулирование интенсивности спекания и регулирование скорости аглоленты. Институт «Металлургавтоматика» разработал проект и рабочие чертежи системы для аглофабрики №2 днепровского металлургического завода им. Дзержинского. Все основные узлы смонтированы на этой фабрике и пущены в эксплуатацию.

Из существующих систем автоматического дозирования компонентов агломерационной шихты [8] все большее распространение получают следящие системы в которых поддерживается постоянным соотношение концентрат/руда причем наибольший эффект достигнут на агломерационных фабриках снабжающихся тонкоизмельченными концентратами повышенной влажности.

Страницы: 1 2 3 4 5