Автоматизация процесса бурения

Рефераты по технологии » Автоматизация процесса бурения

Введение.

Автоматизация технологического процесса составляет важную часть научно-технического прогресса в проведении геологоразведочных работ. Теоретические исследования в области совершенствования управления процессом бурения и его оптимизации получили новые возможности практической реализации с появлением управляющей микропроцессорной техники и созданием на ее основе систем автоматизированного управления.

В отрасли в течение ряда лет проводятся исследования по созданию микропроцессорных систем автоматизированного управления геологоразведочным бурением реализующие методы и средства универсального многофункционального управления способного в отличие от жестких аналоговых решений осуществлять гибкую технологию бурения.

Разнообразные образцы систем автоматизированного управления процессом бурения разведочных скважин на твердые полезные ископаемые позволяют не только управлять процессом бурения в реальном времени по любому из известных алгоритмов но и собирать накапливать и обрабатывать информацию о процессе бурения а также диагностировать работоспособность отдельных узлов и механизмов.

Автоматизация технологических процессов на основе современной техники должна обеспечить интенсификацию производства повышение качества и снижение себестоимости продукции.

Необходимость этого вытекает из анализа производственной деятельности геологоразведочных организаций по выполнению плановых заданий. Несмотря на то что внедрение современного оборудования инструментов прогрессивной технологии бурения средств механизации и автоматизации отдельных операций совершенствование организации труда в целом обеспечило выполнение этих заданий в разведочном бурении остаются значительные резервы повышения производительности труда и улучшения его технико-экономических показателей. Эти резервы заключаются прежде всего в оптимизации и автоматизации оперативного управления процессом бурения скважин и в совершенствовании организации работ.

Сегодня в условиях интенсифицированного производства возросших скоростей бурения резко повысилась физическая нагрузка на буровой персонал. Учитывая также и тенденцию к росту глубин бурения разведочных поисковых скважин можно утверждать что возросли психологическая нагрузка и ответственность за решения принимаемые бурильщиком в процессе бурения. Уже сейчас время простоев из-за неправильных технологических решений в процессе бурения составляет 5-7% общего баланса рабочего времени.

Процесс бурения особенно глубоких скважин протекающий в условиях значительной неопределенности подвергается сильным и непредсказуемым возмущающим воздействиям основа которых – как горно-геологические так и технико-технологические факторы. Буровики знают насколько проектный геологический разрез может отличаться от фактического а следовательно проектная технология бурения – от фактической. Бурильщику приходится отступать от проектной технологии использовать свой опыт знания интуицию чтобы вовремя обнаружить изменение категории буримости пород неблагоприятную технологическую ситуацию; хорошие мастера работают на грани искусства. Поэтому научить бурить хорошо не задавать проектные параметры режимов бурения а варьировать ими в зависимости от условий очень сложно. Намного быстрее и дешевле научить бурильщика пользоваться системой автоматизированного управления процессом бурения которая будет выбирать и поддерживать оптимальные режимы бурения в соответствии с заданными критериями оптимальности и в рамках установленных ограничений. С помощью систем автоматизированного управления можно более жестко нормировать процесс бурения широко внедрять передовые технологии бурения.

Устройство сбора и первичной обработки информации о состоянии процесса бурения является неотъемлимой частью автоматизированной системы управления этим процессом. Задачей настоящего дипломного проекта является разработка такого устройства. Выбор этой проблемы обуславливается спецификой специальности АТПиП.

Глава 1.Описание технологического процесса бурения.

1.1. Буровая скважина и ее элементы.

Буровой скважиной называется цилиндрическая горная выработка в земной коре характеризуемая относительно малым диаметром по сравнению с ее глубиной.

Основные элементы буровой скважины (рис. ZZZZ).

Устье скважины 1 - место пересечения буровой скважиной земной поверхности дна акватории или элементов горной выработки при бурении в подземных условиях.

Забой скважины 8 - дно буровой скважины углубляющееся в процессе бурения; он может быть кольцевой 6 с керном 7 или сплошной 8.

Стенки скважины 9 - боковая поверхность буровой скважины.

Ствол скважины 2 5 - пространство ограниченное стенками скважины. В неустойчивых породах стенки скважины закрепляются обсадными колоннами при этом ствол скважины сужается.

Ось скважины 4 - геометрическое место точек центра забоя перемещающегося при углубке скважины т. е. воображаемая линия соединяющая центры поперечных сечений буровой скважины.

Глубина скважины - расстояние между устьем и забоем скважины по ее оси.

Диаметр скважины - условный диаметр равный номинальному диаметру породоразрушающего инструмента. Фактический диаметр скважины как правило больше номинального породоразрушающего инструмента за счет разработки скважины.

Существует также понятие "конструкция скважины". Подконструкциейскважины подразумевают ее характеристику определяющую изменение


1 2

/

9

3

/

4

5

А - А 6

8 7

Рис.ZZZZ. Элементы буровой скважины:

1 - устье скважины; 2 - ствол скважины обсаженный трубами; 3 - обсадные колонны; 4 - ось скважины; 5 -ствол скважины не обсаженный трубами; 6 - кольцевой забой; 7 - керн; 8 - сплошной забой; 9 - стенки скважины; - диаметры ствола скважины в разных интервалах; - диаметры обсадных колонн соответственно наружные внутренние; - диаметр керна; - глубина интервалов скважины закрепленных трубами;- глубина скважины


диаметра ( ) c глубиной а также диаметры ( ) и длины ( ) обсадных колонн 3 (см. рис. ZZZZ).

Различают ствол скважины не закрепленный трубами 5 и ствол скважины закрепленный трубами 2.

Последующий диаметр скважины уменьшается после каждого закрепления.

Каждая обсадная колонна выступает над устьем скважины но может опускаться и впотай. При необходимости пространство между стенками скважины и обсадными трубами заполняется цементным раствором.

1.2. Классификация буровых скважин

Все скважины бурящиеся с целью региональных исследований поисков разведки и разработки месторождений подразделяются на следующие категории и группы.

Геологоразведочные скважины делят на опорные параметрические структурно- картировочные поисковые и разведочные.

Опорные скважины бурят для изучения геологического строения и гидрогеологических условий крупных геоструктурных элементов (регионов) для выбора наиболее перспективных направлений геологоразведочных работ.

Параметрические скважины бурят для измерения параметров геофизических свойств и температуры пород в условиях их естественного залегания изучения и выявления перспективных районов для детальных геологопоисковых работ.

Структурно-картировочные скважины бурят для выявления и изучения геологических структур элементов залегания пластов пород для контроля и уточнения данных геологической и геофизической съемок.

Поисковые скважины бурят для открытия новых месторождений полезных ископаемых.

Разведочные скважи ны бурят для оконтуривания и определения запасов полезного ископаемого установления горнотехнических условий и выбора метода его эксплуатации.

Эксплуатационные скважины бурят для добычи нефти и газа подземных вод рассолов содержащих соли брома йода и других компонентов; для подземной газификации углей выплавки серы и озокерита выщелачивания железа марганца фосфоритов меди и солей урана возгонки ртути подземного сжигания серы скважинной гидродобычи углей и фосфатов; использования тепла земных недр. В соответствии с добываемым полезным ископаемым эксплуатационные скважины подразделяют на нефтяные газовые гидрогеологические геотехнологические гидротермальные.

Технические скважины бурят для решения различных инженерных задач.

1.3. Сущность и схема процесса бурения скважин

Различают понятия "бурение" и "сооружение скважины". Под бурениемпонимают комплекс следующих операций в результате которых выполнения которых создается буровая скважина.

1. Разрушение горной породы на забое.

2. Удаление разрушенной породы (шлама) с забоя на поверхность.

3. Закрепление стенок скважины в неустойчивых (обрушающих) породах.

Породу можно разрушать механическим электрическим термическим (тепловым) взрывным химическим и другими способами.

Бурят обычно механическим способом различными породоразрушающими инструментами. При этом под воздействием статических и динамических нагрузок породоразрушающий инструмент сминает раздавливает режет скалывает дробит истирает уплотняет породы. Разрушение породы может происходить по всему забою или по кольцу с образованием ненарушенного столбика породы (керна) как показано на рисунке ZZZZZ.

Существуют следующие способы удаления частиц разрушенной породы:

- гидравлический при котором продукты разрушения выносятся потоком промывочной жидкости (вода глинистый раствор специальные промывочные жидкости на основе нефти полимеров и др.);

- пневматический при котором продукты разрушения выносятся потоком сжатого воздуха или газов;

- механический осуществляется буровым или специальным инструментом (буровой стакан ложковый или спиральный бур шнек желонка) что определяется способом бурения;

- комбинированный использует два или три перечисленных выше способов одновременно или последовательно.

Стенки скважины в неустойчивых породах в процессе углубки наиболее часто закрепляют вяжущими промывочными жидкостями (глинистые полимерные и пр.) а также цементом и цементосодержащими материалами синтетическими смолами замораживанием и др. Для крепления скважин на более длительное время в основном применяют стальные обсадные трубы но могут использоваться трубы из нержавеющей стали чугуна асбоцемента пластмасс и других материалов.

Под сооружением скважины понимают комплекс работ по ее подготовке бурению и поддержанию в устойчивом состоянии проведению в ней необходимых исследований ликвидации или сдаче ее в эксплуатацию.

Сооружение скважины кроме бурения предусматривает выполнение следующих видов работ: монтаж буровой установки; испытание и исследования в скважине - каротаж; замер искривления и уровня жидкости отбор проб воды определение дебита с помощью откачек и т.п.; тампонирование скважины с целью разобщения и изоляции водоносных и поглощающих пластов; установка фильтра и водоподъемника в гидрогеологической скважине; предупреждение и ликвидация аварий скважины (ликвидационное тампонирование); разборка буровой установки и работы по рекультивации почвы. Перечисленные виды работ выполняются буровыми монтажными каротажными гидрогеологическими и другими бригадами.

1.4. Классификация способов бурения

Бурение скважин может осуществляться способами принципиально отличающимися по своей физической природе разрушения горных пород: механическими физическими и химическими.

В основном применяют механическое бурение которое в зависимости от способа воздействия на разрушаемую породу подразделяется на вращательное ударное и ударно вращательное (рис. ZZ11).

Наиболее распространено вращательное бурение при котором породоразрушающий инструмент получает вращение от специального механизма - шпинделя вращателя или ротора - через колонну бурильных труб или от забойного двигателя (гидравлического или электрического). В связи с этим различают бурение шпиндельное роторное забойными двигателями - турбобурами и электробурами.

При бурении указанными способами породы любой твердости можно разрушать по всей площади забоя или по кольцу с образованием в центре скважины ненарушенного столбика породы - керна. Первый способ называемый бескерновым широко применяется при бурении




эксплуатационных и технических скважин. Второй способ называется колонковым и применяется при поисках и разведке месторождений полезных ископаемых.

В зависимости от способа подъема керна из забоя скважины на поверхность различают колонковое бурение со съемными керноприемниками и гидротранспортом керна. В первом случае керн поднимается в керноприемнике на стальном тонком канате внутри гладкостовольной колонны бурильных труб а во втором транспортируется во внутренней трубе двойной колонны труб потоком промывочной жидкости. Вращательное бурение ведется с промывкой или продувкой.

При бурении неглубоких скважин в мягких породах применяют вращательное шнековое и медленно вращательное бурение буровыми ложками и спиральными бурами без промывки.

Ударное бурение используют при разведке рассыпных месторождений бурении гидрогеологических и различного назначения технических скважин большого диаметра в породах любой твердости (в крепких породах оно мало производительно). Сущность этого способа заключается в том что тяжелый ударный снаряд с долотом периодически сбрасывается на канате с небольшой высоты на забой дробя и скалывая при этом породу. После каждого удара снаряд поворачивается на некоторый угол за счет раскручивания каната. Удаление разрушенной породы проводится желонками. Ударный способ применяющийся при проходке нефтяных и газовых скважин в некоторых странах включая США уже давно не применяется на нефтяных промыслах России [Н.Г. Середа Е.М. Соловьев - Бурение нефтяных и газовых скважин - Москва "Недра" !984г.].

При ударно-вращательном бурении по вращающемуся под постоянной осевой нагрузкой породоразрушающему инструменту любого типа наносятся частые удары. Крепкие породы при этом разрушаются более эффективно. Для бурения ударно-вращательным способом применяют специальные забойные механизмы: гидроударники пневмоударники магнитострикторы и забойные вибраторы.

Вибрационный способ применяют при бурении неглубоких скважин в мягких породах.

Из физических способов разрушения пород при бурении практически применяются термический термомеханический элетротермический и гидравлический.

Другие способы разрушения пород не вышли из стадии экспериментов.

1.5 Основные технико-технологические понятия процесса

бурения

Понятие о буровом инструменте . Инструмент предназначенный для бурения скважин называется буровым. Буровой инструмент по назначению подразделяется на технологический вспомогательный аварийный и специальный. Технологический инструмент применяют 7епомредственно при бурении скважин: породоразрушающий инструмент (коронки долота расширители) кернорватели колонковые трубы и соединения УБТ желонки ударные штанги шнеки ведущие бурильные трубы. Набор технологического инструмента соединенного в определенной последовательности называется буровым снарядом. В зависимости от способа бурения различают колонковые ударные вибрационные и другие буровые снаряды. Например в состав бурового снаряда при колонковом бурении входят колонковый набор бурильная колонна ведущая труба.

Вспомогательный инструмент предназначен для закрепления стенок скважины и обслуживания технологического инструмента. К вспомогательному инструменту относятся обсадные трубы и соединения хомуты ключи элеваторы подкладные вилки и т.д.

Аварийный инструмент предназначен для ликвидации аварий в скважинах. К аварийному инструменту относятся различные ловильные инструменты (метчики колокола и т. д.) режущие инструменты (труборезы фрезы и т. д.) силовые инструменты (выбивные бабы вибраторы и т. д.) и др.

Специальный инструмент служит для выполнения специальных работ в скважинах связанных с исправлением искривлений бурением в заданном направлении и т. д.

Технологические понятия. Параметр режима бурения - это фактор влияющий на показатели бурения задаваемый измеряемый и поддерживаемый бурильщиком или автоматом в процессе углубки скважины. К основным параметрам относятся: а)при вращательном бурении: осевая нагрузка на породоразрушающий инструмент; частота вращения бурового снаряда; расход очистного агента; б) при ударном бурении: масса ударного снаряда; высота сбрасывания; частота ударов и др.

Совокупность параметров режима бурения характеризующих работу породоразрушающего инструмента (скорость бурения) называется технологическим режимом бурения. Технологический режим бурения выбирается в зависимости от физико-механических свойств горных пород глубины скважины вида породоразрушающего инструмента и технических возможностей оборудования.

Различают следующие виды технологический режимов бурения: оптимальный рациональный и специальный.

Оптимальный режим бурения обеспечивает получение наилучших технико-экономических показателей бурения.

Рациональный режим бурения устанавливается с учетом технических возможностей бурового оборудования и инструмента. Например известно что в монолитных крепких породах бурение импрегнированными алмазными коронками необходимо осуществлять на высоких частотах вращения (>700 - 1000 об/мин) но применяемый буровой станок не имеет этих скоростей или бурильная колонна может обрываться следовательно приходиться это учитывать и устанавливать рациональную частоту вращения ниже возможностей коронки.

Специальный режим бурения применяется для получения заданных качественных показателей бурения или решения специальных задач. Значения параметров при этом режиме отличаются от значений оптимального режима. Например специальный режим устанавливается при бурении по полезному ископаемому которое подвержено разрушению от механических воздействий и потока промывочной жидкости. При этом уменьшается частота вращения снаряда и расход промывочной жидкости.

Приработка алмазных коронок проводится также на специальном режиме при котором осевая нагрузка и частота вращения ниже оптимального или рационального режимов. Иногда выделяют так называемый форсированный режим бурения.

Скорости бурения

Технологические режимы влияют на показатели бурения под которыми понимают количественные и качественные параметры сооружения скважины скорость стоимость 1 м пробуренной скважины процент выхода керна направление скважины и др.

Выполнение отдельных процессов при сооружении скважины может характеризоваться определенной скоростью бурения (механическая рейсовая техническая коммерческая и цикловая).

Механическая скорость бурения -величина углубки скважины за единицу времени чистого бурения и определяется (в м/ч) по формуле

где l - величина углубки скважины за время чистого бурения м; - время чистого бурения ч.

Под чистым бурением понимают время в течение которого разрушаются породы на забое.

В практике в зависимости от момента определения различают начальную конечную среднюю наибольшую механическую скорости.

Механическая скорость бурения - основной показатель отражающий эффективность способа бурения качество применяемых породоразрушающих инструментов рациональность режимов их эксплуатации совершенство применяемой буровой технологии и т. д.

Рейсовая скорость бурения - величина углубки скважины за единицу времени продолжительности рейса и определяется ( в м/ч) по формуле

где - величина углубки скважины за рейс; - время на выполнение спуско-подъемных и вспомогательных операций ч.

Рейсом называется комплекс работ включающий в себя спуск и подъем бурового снаряда чистое бурение извлечение керна замену породоразрушающего инструмента и др.

Рейсовая скорость зависит от механической скорости и глубины скважины и дополнительно характеризует износоустойчивость породоразрушающих инструментов совершенство буровых снарядов обеспечивающих высокопроцентный отбор керна а также степень комплексной механизации и автоматизации выполнения спускно-подъемных и вспомогательных операций в течение рейса.

Техническая скорость бурения определяется объемом бурения пробуренным одной бригадой (буровой установкой) за месяц с учетом времени затраченного на чистое бурение СПО и вспомогательные операции крепление и цементирование все виды исследований планово-предупредительные ремонты и т. д. (в м/ст.-мес)

где L - объем бурения за 1 месяц м; и - время соответственно чистого бурения СПО и дополнительных затрат (крепление исследование плановые ремонты и т. д.) за месяц ч; М - продолжительность месяца ч (применяется М = 720 или 744 ч).

Техническая скорость бурения зависит от механической и рейсовой скорости и дополнительно отражает эффективность выполнения всех дополнительных производительных работ связанных с сооружением скважины (крепление цементирование гидрогеологические и геофизические исследования и т. д.).

Коммерческая скорость бурения Определяется объемом бурения за месяц с учетом также непроизводительных затрат ( простои осложнения аварии) (в м/ст.-мес.)

где - время непроизводительных затрат на месяц ч.

Цикловая скорость бурения определяется отношением глубины скважины к затратам времени в месяц от перевозки бурового оборудования до ликвидации скважины (м/ст.-мес.).

Где Н - глубина скважины м; - общие затраты времени на сооружение скважины (от перевозки до ликвидации) ст.-мес.

Цикловая скорость бурения характеризует уровень применяемых технических средств технологии бурения организации труда при сооружении скважины ее ликвидации или сдаче в эксплуатацию.

1.6 Сущность и разновидности глубокого вращательного бурения

Вращательное бурение без отбора керна является основным средством сооружения скважины при разведке и эксплуатации нефтяных и газовых месторождений. Кроме этого оно применяется при бурении водозаборных взрывных гидротермальных и других скважин для различных инженерных целей а также при бурении стволов шахт. Учитывая выше сказанное опишем подробнее именно глубокое вращательное бурение.

Бурение глубоких скважин осуществляется только вращательным способом и подразделяется на роторное турбинное и электробурами.

При роторном бурении буровой снаряд вращают ротором устанавливаемым на поверхности земли над устьем скважины.

При турбинном бурении породоразрушающий инструмент вращается турбобуром который спускают на забой скважины вместе с долотом на колонне бурильных труб. Турбобур представляет собой многоступенчатую гидравлическую турбину работающую от потока промывочной жидкости. Колонна бурильных труб при этом не вращается неподвижный ротор воспринимает реактивный момент.

При бурении электробуром породоразрушающий инструмент вращается маслонаполненным забойным электродвигателем переменного тока имеющим малый диаметр и значительную длину. Колонна бурильных труб при этом неподвижна. Благодаря этому резко сокращается вращающий момент на колонне исключается знакопеременный изгиб труб и почти полностью снимаются динамические нагрузки. Бурильная колонна работает в более благоприятных нагрузках в результате чего увеличивается стойкость труб. Электроэнергия к электродвигателю подводится по вмонтированным в бурильные трубы отрезкам кабеля которые при свинчивании бурильных труб автоматически соединяются. Промывочная жидкость подается на забой по зазору между внутренними стенками труб и кабелем.

При роторном и турбинном бурении там где необходимо уточнение геологического разреза применяется бурение с отбором керна колонковыми долотами или турбодолотами.

Роторное бурение и бурение электробурами может вестись с промывкой или продувкой.

Глубины бурения вращательным способом достигают 10 км. Этим способом проектируется пробурить скважины глубиной 15 км. Диаметры скважины колеблются от 76 до 590 км.

При всех разновидностях глубокого вращательного бурения используют одни и те же очень сложные буровые установки общая установочная мощность которых достигает 4000 кВт а масса - 1000 т.

.Вращательное бурение без отбора керна возможно в породах любой твердости от I до XII категории по буримости при относительно высоких скоростях углубки скважин. В мягких породах механическая скорость бурения может достигать 100 м/ч а коммерческая - 6 - 9 тыс. м/ст.-мес. В твердых породах при больших глубинах механическая скорость бурения уменьшается до 1 м/ч а коммерческая до 200-300 м/ст.-мес.

В России около 76 % общего объема скважин бурят турбинным способом 22 5 % - роторным и 1 5 % - электробурами.


Глава 2. Технико-экономическое обоснование разработки системы автоматизированного управления процессом бурения скважин

2.1 Технико-экономические предпосылки автоматизации управления процессом бурения

Автоматизация технологических процессов на основе современной техники должна обеспечить интенсификацию производства повышение качества и снижение себестоимости продукции.

Необходимость этого вытекает из анализа производственной деятельности геологоразведочных организаций по выполнению плановых заданий. Несмотря на то что внедрение современного оборудования инструментов прогрессивной технологии бурения средств механизации и автоматизации отдельных операций совершенствование организации труда в целом обеспечило выполнение этих заданий в разведочном бурении остаются значительные резервы повышения производительности труда и улучшения его технико-экономических показателей. Эти резервы заключаются прежде всего в оптимизации и автоматизации оперативного управления процессом бурения скважин и в совершенствовании организации работ.

. Автоматизация процесса бурения стала практически возможной лишь с появлением относительно дешевых и надежных ЭВМ способных выполнять функции автоматизированного управления технологическим процессом бурения.

Эта глава посвящена обсуждению практических вопросов связанных с выявлением необходимости и обоснования разработки систем автоматизированного управления процессом бурения. Поскольку в бурении нет собственного значительного опыта автоматизации управления технологическими процессами здесь использован опыт и других отраслях промышленности.

В результате внедрения в производство новой техники и прогрессивной технологии скорости алмазного бурения за последние 10 лет возросли в 1 5-2 раза и по мнению специалистов сохранить в дальнейшем темпы роста производительности только за счет технических решений вряд ли возможно. Но в условиях интенсифицированного производства возросших скоростей бурения резко повысиласьфизическая нагрузка на буровой персонал. Учитывая также и тенденции к росту глубин бурения разведочных и поисковых скважин можно утверждать что возросли психологическая нагрузка и ответственное за решения принимаемые бурильщиком в процессе бурения. Уже сегодня время простоев из-за неправильных технологических решений в процессе бурения составляет 5-7% общего баланса рабочего времени.

Итак с одной стороны имеется объективная необходимость в автоматизации процесса бурения с другой - существуют необходимые предпосылки для создания систем автоматизированного управления. Рассмотрим подробнее некоторые аспекты технико-экономического об снования разработки систем управления.

2.2. Характеристики процесса бурения как объекта автоматизированного управления

Специалисты американской фирмы IBM имеющие большой опыт в области создания управляющих систем с ЭВМ для сложных технологических процессов которые потенциально необходимо автоматизировать приводят следующие общие характеристики и факторы:

· необходимость частных и значительных перестроек рабочих режимов;

· мощность установки;

· возмущения действующие на процессы;

· сложность процесса и др.

Процесс бурения геологоразведочных скважин характеризуется частыми и значительными перестройками рабочих режимов. Это связано как с частым стохастическим изменением свойств разбуриваемых пород так и с другими факторами например изменением свойств породоразрушающего инструмента в процессе бурения и очистного агента удлинением бурильного вала; специфическими операциями обусловленными постановкой инструмента на забоя и его приработкой подъемом керна бурильных труб и др.

По мнению американских специалистов мощность установки выраженная через размер капиталовложений является одним из критериев для обоснования необходимости автоматизации технологического процесса. При стоимости системы управляющей сложным процессом в среднем- равной 300 тыс. долл. и двухлетнем сроке окупаемости стоимость основных фондов должна составлять от 5 до 60 млн. долл. (данные 1996 г.)

Другая общая особенность многих процессов для которых обосновано применение автоматизированного управления - частые и сильные возмещающие воздействия приводящие к экономическим потерям.

Процесс бурения особенно глубоких скважин протекающий в условиях значительной неопределенности подвергается сильным и непредсказуемым возмущающим воздействиям основа которых -как горно-геологические так и технико-технологические факторы.

Процесс бурения является не только производственным процессом с точки зрения потребления материальных и трудовых ресурсов и производства продукта труда в виде сформированного (пробуренного) ствола скважины и полученного керна (за что собственно и производится оплата буровой бригаде) но также и научно-исследовательским процессом если иметь в виду основную цель производства буровых работ - получение информации о строении земных недр.

Возникает парадокс: планируя проектируя и нормируя процесс бурения мы тем самым утверждаем что знаем предмет труда - земные недра. Но скважины бурят следовательно мы не знаем предмета труда и стремимся получить новые знания о строении земных недр. Пока подготовляется процесс бурения его проектирование мы рассматриваем как детерминированный процесс. После начала бурения и в ходе бурения этот производственный процесс приобретает характер стохастического научно-исследовательского информационного процесса. Противоречие между производственным и научно-исследовательским характером процесса бурения является его особенностью которую необходимо учиты­вать при создании системы автоматизированного управления.

С точки зрения методики автоматического управления процесс буре­ния практически не исследован. Анализ диаграммы записи параметров режимов бурения записанный с максимально допустимой частотой показывает практически непрерывные изменения как параметров так и показателей процесса бурения. С какой частотой нужно управлять процессом бурения как зависит его эффективность от частоты управления? При ручном управлении эти вопросы не возникали. При автоматическом управлении эта задача является принципиальной.

Управляющие воздействия от системы управления к управляемому объекту должны поступать своевременно и в соответствии с изменившимися условиями бурения. От быстродействия управления во многом висят качество управления и конечный результат. А поскольку процесс бурения динамичен и требует частой корректировки управляющих воздействий по крайней мере в сильно перемежающихся породах то очевидно что автоматизированная система управления обладает преимуществом перед человеком.

Сложные с технологической или эксплуатационной точки зрения процессы могут быть объектом автоматизации управления с применением ЭВМ. Технологическая сложность процесса бурения обусловлена большим количеством технологических переменных значения которых в той или иной степени определяют эффективность этого процесса и множеством взаимодействий между ними что требует приложения не всегда очевидных управляющих воздействий. Это особенно проявляется в различных технологических ситуациях от правильности распознавания которых зависят управляющие воздействия бурильщиков. Эксплуатационная сложность обусловлена технологической сложностью и характеризуется требованием ведения процесса бурения на оптимальном уровне в пределах установленной системы ограничений. Это усугубляется и тем что бурильщику для выбора правильного решения необходимо помнить и предысторию процесса бурения за сравнительно длительный период времени.

Ручное управление даже двумя-тремя параметрами процесса бурения на оптимальном уровне в условиях частоперемежающихся пород и глубокой скважины вряд ли возможно.

Автоматизированное управление процессом бурения позволяет успешно изменять практически одновременно два-три параметра с недоступной человеку частотой. Следовательно источником эффективности автоматизированного управления является по крайней мере уменьшение промежутка времени поиск оптимального режима быстрая перестройка с одного режима на другой в связи с изменившимися условиями а также практически полное исключение нарушений процесса приводящих к аварийным ситуациям. Кроме того стратегия управления процессом бурения может быть построена на учете вычисляемых показателей (например углубка за оборот). Эти косвенные переменные рассчитываются управляющей ЭВМ использующей информацию об основных параметрах процесса бурения которые измеряются серийной контрольно-измерительной аппаратурой.

3.3. Основные источники эффективности разработки и внедрения систем автоматизированного управления процессом бурения

Один из основных источников экономической эффективности -повышение качества управления при его автоматизации.

Если управление процессом бурения рассматривать как поддержание параметров процесса (например механической скорости и т. п.) возможно ближе к заданному режиму который устанавливается бурильщику инженером-технологом на основе его знаний геолого-технических усло­вий бурения то качеством управления будет то насколько точно в течение длительного времени процесс бурения соответствует заданным режимам установкам и т.д. Как показывает практика обычно усилий бурильщика недостаточно чтобы поддерживать процесс в пределах заданного режима или показателя. Это объясняется случайным ха­рактером факторов влияющих на процесс бурения и ограниченными возможностями человека.

Система автоматизированного управления обеспечивает повышение качества управления благодаря своей особенности быстро реагировать на возмущения и вырабатывать управляющие воздействия в которых учитывается взаимное влияние параметров и показателей процесса.Кроме того система гарантирует качество управления что особенно важно.

Помимо описанного подхода к управлению заключающегося в поддержании заданного состояния процесса (так называемое локальное регулирование) в системе должны быть реализованы перспективные методы управления которые нельзя осуществить с помощью традиционного ручного управления. К ним можно отнести такие методы; реализуемые в процессе автоматизированного управления как оперативная оптимизация адаптивная настройка регулирование по возмуще­нию управление по вычисляемым косвенным переменным которые не поддаются непосредственному измерению (например достижение ми­нимального отношения мощности на бурение к механической скорости бурения) и т.д.

Другой источник эффективности систем автоматизированного уп­равления - увеличение производительности труда в результате роста механической скорости бурения уменьшения количества аварий и ос­ложнений увеличения производительного времени за счет объективного документированного контроля.

Очевидно в ближайшем будущем не предвидится сокращение об­служивающего персонала буровой установки так как по крайней мере с точки зрения техники безопасности буровая установка должна об­служиваться не менее чем двумя рабочими. Но можно говорить об условном высвобождении численности при автоматизированном управлении даже в процессе бурения одной скважины. Поскольку система управления принимает на себя часть функций обслуживающего бурового персонала то в высвободившееся время рабочие могут выполнять различные вспомогательные работы. Кроме того за счет повышения скоростей бурения возможно сокращение количества буровых устано­вок а следовательно и численности рабочих.

Снижение себестоимости 1 м бурения скважины - следующий источ­ник эффективности систем автоматизированного управления процессом бурения. Это достигается с одной стороны за счет роста производи­тельности труда а с другой - за счет меньших удельных расходов истирающих материалов инструмента энергии увеличения межремонтных сроков оборудования и т.д. Например известная система Вектор-1. разработанная в Севукргеологии В. А. Флянтиковым и В. А. Бабишиным. обеспечила рост производительности труда на 46% увеличение механической скорости и длины рейса на 30 и 43% соответственно снижение затрат мощности при бурении 1 м расхода истирающих материалов и себестоимости буровых работ на 6 50 и 19 3% соответственно.

Такие результаты получены при бурении плановых геологоразведочных скважин общим объемом более 10 тыс. м. Следует учесть что названная система вследствие жесткой аппаратной реализации алго­ритма управления обладает весьма ограниченными функциональными возможностями и по существу управляет лишь по одному пара­метру-нагрузке на породоразрушающий инструмент (долото).

К неявным источникам экономической эффективности можно отнести функции контроля и регистрации параметров а также показателей процесса бурения выполненные системой управления. При этом вы­свобождается определенная часть инженерно-технических работников; которые должны хронометрировать процесс и предварительно обра­батывать данные.

Полученные объективные данные служат основой для оптимального проектирования процесса бурения нормирования и др.

В недалеком будущем с внедрением гидрофицированных буровых установок нового поколения возможен рост эффективности за счет расширения функциональных возможностей системы управления процессом бурения таких как автоматизация спуско-подъемных операций диагностика состояния станка оперативная обработка данных скважинной геофизики учет расхода материалов и т. д.

Внедрение систем автоматизированного управления имеет социаль­ное значение. Прежде всего это устранение различий между умственным и физическим трудом улучшение условий труда и техники безопасности поскольку в результате автоматизации буровой персонал может быть удален на безопасное расстояние от движущихся и вращающихся частей и создание комфортабельных условий работы.

3.4. Состояние разработок по автоматизации процесса бурения

По имеющимся данным созданием систем автоматизированного управления процессом бурения в последнее время занимаются также зарубежные фирмы.

Японская фирма “Кокэн Боринг Машин Ко” разрабатывает буровые станки с компьютерным управлением с 1979 г. Например в 1981 г. был разработан буровой станок СВК-К-10А с программным управлением. Эта модель представляет собой малогабаритный гидравлический станок со встроенной микро-ЭВМ который предназначен для геологической съемки и бурения цементировочных скважин глубиной до 100 м при постройке дамб и плотин. Разработчики обоснованно считают что эффективность и безопасность бурения значительно зависят от квалификации оператора-бурильщика. Поэтому цель разработки бурового станка со встроенной ЭВМ состоит в обеспечении высокой надежности эффективности и безопасности работы при бурении станком независимо от квалификации бурильщика и тем более в открытии возможности автоматического бурения станком скважины заданной глубины в неизвестных горно-геологических условиях.

Страницы: 1 2 3 4