Целью данной лабораторной работы является изучение принципов и получения практических навыков моделирования структурных схем в среде SIMULINK пакета MATLAB.
ТЕОРЕТИЧЕСКИЕ ИССЛЕДОВАНИЯ
Задание 1
Построить график функции в декартовой системе координат. Результаты представить в виде графика.
Диапазон изменения аргумента: 0.1-1.8
Шаг: 1/20=0.05
Структурная схема для построения данного графика функции представлена на рисунке 1.1
Рисунок 1.1 – Структурная схема моделирования функции к заданию 1
Задание 2
Решить системы линейных и нелинейных уравнений. Начальные приближения:
;
Задана система линейных уравнений:
;
Преобразую систему к виду:
;
Структурная схема для решения данного линейногоуравнения представлена на рисунке 1.2
Рисунок 1.2 - Структурная схема для решения системы линейныхуравненийк заданию 2
Задана система нелинейных уравнений:
;
Преобразую систему к виду:
;
Структурная схема решения данного линейногоуравнения представлена на рисунке 1.3
Рисунок 1.3 - Структурная схема для решения системы нелинейныхуравненийк заданию 2
Задание 3
Осуществить моделирование структуры, представленной на рисунке 1.4
Рисунок 1.4 – Структурная схема к заданию 3
ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ
1. Структурная схема для построения графика функции к заданию 1 представлена на рисунке 2.1
Рисунок 2.1 – Структурная схема моделирования функции к заданию 1
Построил график функции к заданию 1, представленный на рисунке 2.2.
Рисунок 2.2 – График функции к заданию 1
2. Задана система линейных уравнений:
;
Структурная схема для решения данного линейногоуравнения представлена на рисунке 2.3
Рисунок 2.3 - Структурная схема для решения системы линейныхуравненийк заданию 2
Построил структурные модели к заданию 2. Для линейной системы уравнений получил следующие значения:
;
3. Задана система нелинейных уравнений:
;
Структурная схема решения данного линейногоуравнения представлена на рисунке 2.4
Структурная схема для решения системы нелинейныхуравненийк заданию 2.
Для нелинейной системы уравнений получил такие значения:
.
4. Построил структурную модель к заданию 3 (рисунок 2.5). График результатов работы модели F
(
t
,
y
1
)
представлен на рисунке 2.6.
Рисунок 2.5 – Структурная схема к заданию 3
Рисунок 2.6 - График F
(
t
,
y
1
)
результатов работы функции модели 3 к заданию 3
График результатов работы модели F
(
t
,
y
2
)
представлен на рисунке 2.7.
Рисунок 2.7 - График F
(
t
,
y
2
)
результатов работы функции модели 3 к заданию 3
ВЫВОДЫ
В результате выполнения данной лабораторной работы получил практические навыки моделирования структурных схем в среде SIMULINK пакета MATLAB. Также я научился строить графики функций в декартовой системе координат (рисунок 2.1). Я научился решать системы линейных и нелинейных уравнений, то есть нашел корни этих уравнений
А также получил результаты работы модели в задании 3 (рисунок 2.2 и 2.3).
Научился работать с такими блоками, как Sum, AlgebraicConstraint, Gain, Productи другими.
Другие работы по теме:
Расчет параметров вентильного электропривода
Принцип действия вентильного электропривода. Формирование вращающего момента, результирующей намагничивающей силы. Электрическая схема переключения полюсов вентильного электропривода. Моделирование переходных процессов. Суммарный момент возмущения.
Анализ САУ с помощью MATLAB и SIMULINK
Построение временных характеристик с помощью пакета Control System В качестве примера выберем апериодическое звено первого порядка Для построения временных характеристик с помощью пакета Control System используются функции step и impulse.
Обработка электрического сигнала с помощью фильтрации
Методы цифровой обработки сигналов и их применение в различных сферах жизни человека. Характеристика и назначение полосового фильтра, особенности его реализации в цифровой форме. Реализация модели фильтра в Simulink. Возможности тулбокса WAVELET.
Исследование линейных и нелинейных систем управления
Непрерывная система регулирования, состоящая из объекта регулирования, автоматического регулятора и нелинейной системы, включающей нелинейное звено. Возможность возникновения автоколебаний. Моделирование нелинейной системы автоматического регулирования.
Расчёт структурной схемы
Дана структурная схема: Где: W1 = 10; W5 = K(1+10p) W6=10 / (1+2*10*0.2*p+102p2) 1. Получить передаточную функцию разомкнутой системы W(p) Вывод передаточной функции производится вручную любым из методов алгебраических и структурных преобразований блок - схемы.
Идентификация и моделирование технологических объектов
Идентификация параметров электромеханической системы. Моделирование нелинейных объектов. Оптимизация параметров пид-регуляторов для объектов управления с нелинейностями с применением пакета прикладных программ Nonlinear Control Design (NCD) Blockset.
Наблюдатель Люенбергера
Непрерывная система с передаточной функцией. Оценка состояния объекта с помощью наблюдателя пониженного порядка. Расчет наблюдателя Люенбергера, оценивание вектора состояний. Решение задачи с использованием MatLab, построение графиков вектора состояния.
Одномерная оптимизация функций методом золотого сечения
Создание программы в среде программирования MatLab для решения задачи одномерной оптимизации (нахождение минимума и максимума заданных функций) методом золотого сечения, построение блок-схемы алгоритма и графическое изображение исследованных функций.
Построение графического интерфейса в системе Matlab
Matlab как система инженерных и научных вычислений, принцип ее работы и назначение, сферы применения и оценка эффективности, анализ сильных и слабых сторон. Алгоритм создания интерфейса, основные способы и методы создания форм и элементов управления.
Моделирование электрических цепей с нелинейными элементами
Моделирование схем с резистивным нелинейным элементом. Исследование характеристик транзистора. Графический ввод, редактирование и анализ принципиальных схем в режимах анализа переходных процессов, частотного анализа и анализа в режиме постоянного тока.
Дослідження перехідних характеристик цифрових САК
Дослідження цифрових систем автоматичного керування. Типові вхідні сигнали. Моделювання цифрової та неперервної САК із використання MatLab. Результати обчислень в програмі MatLab. Збільшення періоду дискретизації цифрової системи автоматичного керування.
Решение задачи с помощью программ Mathcad и Matlab
Разработка модели движения практически невесомой заряженной частицы в электрическом поле, созданном системой нескольких фиксированных в пространстве заряженных тел. При условии, что тела находятся в одной плоскости, но частица находится вне плоскости.
Решение задачи с помощью программ Mathcad и Matlab
Расчет в программах Mathcad и Matlab связи между глубиной залегания подводной лодки, временем поражения цели и расстоянием, который корабль успеет пройти по горизонтали. При условии, что пуск торпеды производится в момент прохождения корабля над лодкой.
Решение задачи с помощью программ Mathcad и Matlab
Моделирование движения заряженной частицы, падающей вертикально вниз на одноименно заряженную пластину, с помощью программ Mathcad и Matlab. Построение графика зависимости высоты, на которой находится точка, от времени и скорости движения этой частицы.
Решение задачи с помощью программ Mathcad и Matlab
Определение зависимости горизонтальной длины полета тела и максимальной высоты траектории от одного из коэффициентов сопротивления среды, фиксировав все остальные параметры. Представление этой зависимости графически и подбор подходящей формулы.
Решение задачи с помощью программ Mathcad и Matlab
Исследование связи между временем достижения торпеды, снабжённой разгонным двигателем (глубинной бомбы) заданной глубины и формой корпуса противолодочного корабля: сферической, полусферической, каплевидной. Представление этой зависимости графически.
Порядок моделирования входного сигнала
Порядок и методика моделирования входного сигнала, общие принципы представления сигналов математическими моделями. Взаимосвязь математических моделей с компьютерными, их место и значение на современном этапе. Пакеты для моделирования различных процессов.
Идентификация и моделирование систем управления
СОДЕРЖАНИЕ 1. Задание 3 2. Построение аналитической модели и ее анализ. 2.1 Построение аналитической модели 4 2.2 Анализ динамических процессов в системе на основе использования построенной аналитической модели 11
Системы автоматического управления
СОДЕРЖАНИЕ Лабораторная работа №1. Анализ САУ с помощью ЭВМ и программного обеспечения MATLAB/Simulink Цель работы Программа работы Ход работы 1. Построение временных характеристик САУ с помощью пакета Control System
Jet Propulsion Essay Research Paper JET PROPULSIONThermodynamics
Jet Propulsion Essay, Research Paper JET PROPULSION Thermodynamics ME-304 M, T, W, F =* 2:00 – 3:00 June 5, 2000 Introduction: The following report, submitted to Roy Aircraft Engines Incorporated for an efficiency study, is an analysis of a turbojet engine completed by thermodynamically studying each main component that constitutes a turbojet engine.