Вариант №9
№1. Решить
систему линейных уравнений по правилу Крамера, с помощью обратной матрицы
a)
По правилу
Крамера.






;
б) С помощью обратной
матрицы.

Алгебраические
дополнения:




№ 2. Вычислить
определитель
а) С помощью теоремы
Лапласа. б) Предварительно упростив, получив нули в какой либо строке
(столбце).




№3. Найти ранг матрицы
a)
С помощью
элементарных преобразований

б) Найти ранг матрицы
методом окаймления миноров

Решение. Начинаем с
миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор
(элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при
помощи второй строки и третьего столбца, получаем минор M 2=
, отличный от нуля.
Переходим теперь к минорам 3-го порядка, окаймляющим М 2. Их всего два (можно
добавить второй столбец или четвертый). Вычисляем их:


Таким образом, все
окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А
равен двум.
№4. Дана система уравнений:
a) исследовать на совместимость б)
Найти общее решение методом Гауса и записать два частных.




Частные решения:

№5. Найти
фундаментальную систему решений однородной системы уравнений









№ 6
a)
Найти площадь ABC

Найдем векторное
произведение
:

б) Составим уравнение
плоскости ABC:






Объем параллелепипеда,
построенного на трёх некомпланарных векторах
,
равен абсолютной величине их смешанного произведения, т.е. 18. Объем тетраэдра 
e) Найти величину плоского угла при
вершине С плоскости ABC

Другие работы по теме:
Метод решения уравнений Ньютона - Рафсона
Метод Ньютона-Рафсона, также известный как Метод Ньютона, представляет собой обобщенный метод поиска корня уравнения Примем x = xj в качестве j-го приближения к корню уравнения (1). Предположим, что xj не является решением. Следовательно,
Простое доказательство великой теоремы Ферма
Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
Метод Гаусса
Методические рекомендации по выполнению заданий методом гауса. Примеры выполнения заданий.
Доказательство теоремы Ферма для n=4
Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
Краткое доказательство гипотезы Биля
Гипотеза Биля формулируется следующим образом: неопределенное уравнение: Аx +Вy= Сz/1/ не имеет решения в целых положительных числах А, В, С, x, y и z при условии, что x, y и z больше 2.
Контрольная работа по Математическому моделированию
Задание 1. Решить систему линейных уравнений методом Гаусса. Решение. Умножим первое уравнение на -2 и сложим со вторым, умножим третье уравнение на -2 и сложим с первым, умножим четвертое уравнение на -2 и сложим с первым.
Правила Крамера
ПРАВИЛО КРАМЕРА Рассмотрим систему 3-х линейных уравнений с тремя неизвестными: Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,
Решение систем линейных уравнений
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ
Задачи по Математике
ЗАДАЧИ КОНТРОЛЬНОЙ РАБОТЫ Задачи № 1-10. Решить систему линейных алгебраических уравнений тремя способами: 1) методом Крамера, 2) с помощью обратной матрицы, 3) методом Гаусса.
Определители
Муниципальное образовательное учреждение – гимназия № 47 Реферат по математике ученицы 8 г класса Годуновой Екатерины г.Екатеринбург, 2000г. Введение
Доказательство теоремы Ферма для n 4
Доказательство великой теоремы Ферма для показателя степени n=4 Великая теорема Ферма формулируется следующим образом: диофантово уравнение: Аn+ Вn = Сn (1)
Системы линейных уравнений и неравенств
Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
Математика
Математика и информатика. Решение системы линейных алгебраических уравнений методом Крамера. Работа в текстовом редакторе MS WORD. Рисование с помощью графического редактора. Определение вероятности. Построение графика функции с помощью MS Excel.
Краткое доказательство гипотезы Биля
Гипотеза Биля как неопределенное уравнение, не имеющее решения в целых положительных числах. Использование метода замены переменных. Запись уравнения в соответствии с известной зависимостью для разности квадратов двух чисел. Наличие дробных чисел.
Алгебраическое доказательство теоремы Пифагора
Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
Алгебра матриц. Системы линейных уравнений
Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
Метод Крамера
Министерство рыбного хозяйства Владивостокский морской колледж ТЕМА: “ Системы 2-х , 3-х линейных уравнений. Правило Крамера. ” г. Владивосток
Определитель матрицы
Вид в матричной форме, определитель матрицы, алгебраического дополнения и всех элементов матрицы, транспоная матрица. Метод Крамера, правило Крамера — способ решения квадратных систем линейных алгебраических уравнений с определителем основной матрицы.
Решение произвольных систем линейных уравнений
Рассмотрение систем линейных алгебраических уравнений общего вида. Сущность теорем и их доказательство. Особенность трапецеидальной матрицы. Решение однородных и неоднородных линейных алгебраических уравнений, их отличия и применение метода Гаусса.
Исследования и теории Габриеля Крамера
Преподавательская работа швейцарского математика Габриэля Крамера, введение в анализ алгебраических кривых. Система произвольного количества линейных уравнений с квадратной матрицей Крамера. Классификация и порядок математических и алгебраических кривых.
Моделирование структурных схем в среде SIMULINK пакета MATLAB
Практические навыки моделирования структурных схем в среде SIMULINK пакета MATLAB. Построение графиков функций в декартовой системе координат. Решение систем линейных и нелинейных уравнений. Работа с блоками Sum, Algebraic Constraint, Gain, Product.
Решение линейных интегральных уравнений
Основные леммы и теоремы для решения линейных интегральных уравнений методом итераций. Применение информационных технологий для вычисления функции, построение алгоритма для определения уравнения по ядру и отрезку интегрирования и правой части уравнения.
Адамар Жак
В теории чисел Адамар доказал асимптотический закон распределения простых чисел (высказанный П. Л. Чебышевым). В теории дифференциальных уравнений занимался задачей О. Коши для гиперболических уравнений.