В школьном курсе алгебры известны методы решения уравнений 1 и 2 степеней по формулам. Методов решений высших степеней (3, 4 и т.д.) нет. А такие уравнения часто встречаются на вступительных экзаменах в вузы, в заданиях части «C» ЕГЭ, на олимпиадах. Мы представляем решение таких уравнений, в которых показываем несколько методов. В школьном курсе алгебры известны методы решения уравнений 1 и 2 степеней по формулам. Методов решений высших степеней (3, 4 и т.д.) нет. А такие уравнения часто встречаются на вступительных экзаменах в вузы, в заданиях части «C» ЕГЭ, на олимпиадах. Мы представляем решение таких уравнений, в которых показываем несколько методов. При овладении этими методами решения отдельных уравнений, метод будет являться стандартным. Эти методы не являются исчерпаемыми. Наша цель, показать как анализировать, видеть и организовывать поиск метода решения. Некоторые уравнения взяты из указанной ниже литературы, некоторые составлены авторами. При желании эта тема может быть продолжена, расширена другими методами ( графическим, функционально-аналитическим, графоаналитическим, логическими и другими), можно рассматривать сложно-степенные уравнения. Нашей задачей из всего многообразия уравнений и методов решений выделить отдельные, на наш взгляд представляющих интерес. 1. Биквадратные уравнения. 1. Биквадратные уравнения. 2. Симметричные уравнения. 3. Степенные уравнения. 3.1) Кубические уравнения. 3.2) Уравнения 4-й степени. 4. Графический метод решения уравнений.
Другие работы по теме:
Метод наименьших квадратов
Метод наименьших квадратов Оценка параметров уравнения А0 , А1, А2 осуществляется методом наименьших квадратов (МНК). В основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождении параметра модели, при котором минимизируется сумма квадратов отклонений фактических значений результативного признака от теоретических, полученных по уравнению регрессии.
Эпюра внутренних сил
Задача №1 а = 0,5 м q = 10 kH/м F = 2,5 cм2 Е = 2105 Мпа L -?, N -?, -? Решение. Данная задача является статически неопределимой, так как её нельзя решить при помощи только уравнений статики (уравнений равновесия). Недостающее уравнение составим из условия деформаций. Для этого отбросим одну из заделок (правую) и заменим её действие неизвестной реактивной силой
Реакция опор конструкции
Методика определения реакции опор данной конструкции, ее графическое изображение и составление системы из пяти уравнений, характеризующих условия равновесия механизма. Вычисление значений скорости и тангенциального ускорения исследуемого механизма.
Простое доказательство великой теоремы Ферма
Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
Доказательство великой теоремы Ферма
Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
Доказательство теоремы Ферма для n=4
Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
Доказательство теоремы Ферма для n=3
Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
Краткое доказательство гипотезы Биля
Гипотеза Биля формулируется следующим образом: неопределенное уравнение: Аx +Вy= Сz/1/ не имеет решения в целых положительных числах А, В, С, x, y и z при условии, что x, y и z больше 2.
Правила Крамера
ПРАВИЛО КРАМЕРА Рассмотрим систему 3-х линейных уравнений с тремя неизвестными: Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,
Алгоритм решения Диофантовых уравнений 3
Данная статья является продолжением работы «Алгоритм решения Диофантовых уравнений». Нижегородская область Г. Заволжье Белотелов В.Д. 2009 год Подход к решению уравнений
Виды тригонометрических уравнений
Реферат на тему: Виды тригонометрических уравнений” Успенского Сергея Харцызск 2001 год Виды тригонометрических уравнений. Простейшие тригонометрические уравнения
Определители
Муниципальное образовательное учреждение – гимназия № 47 Реферат по математике ученицы 8 г класса Годуновой Екатерины г.Екатеринбург, 2000г. Введение
Доказательство теоремы Ферма для n 4
Доказательство великой теоремы Ферма для показателя степени n=4 Великая теорема Ферма формулируется следующим образом: диофантово уравнение: Аn+ Вn = Сn (1)
Системы линейных уравнений и неравенств
Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
Краткое доказательство гипотезы Биля
Гипотеза Биля как неопределенное уравнение, не имеющее решения в целых положительных числах. Использование метода замены переменных. Запись уравнения в соответствии с известной зависимостью для разности квадратов двух чисел. Наличие дробных чисел.
Краткое доказательство гипотезы Билля
Формулировка гипотезы Билля и методика ее краткого доказательства. Анализ составляющих гипотезу алгебраических выражений. Использование метода замены переменных при доказательстве гипотезы Билля, не имеющей решения при целых положительных числах.
Алгебраическое доказательство теоремы Пифагора
Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
Алгебра матриц. Системы линейных уравнений
Выполнение действий над матрицами. Определение обратной матрицы. Решение матричных уравнений и системы уравнений матричным способом, используя алгебраические дополнения. Исследование и решение системы линейных уравнений методом Крамера и Гаусса.
Закономерность распределения простых чисел (дополнение)
Я написал предыдущий ряд разностей по принципу личной симпатии. Подстраховался от критики, ежели бы у кого-то не получилось составить систему уравнений, например, с разностью d = 7, ибо для нетренированных рук могут возникнуть трудности.
Метод Крамера
Министерство рыбного хозяйства Владивостокский морской колледж ТЕМА: “ Системы 2-х , 3-х линейных уравнений. Правило Крамера. ” г. Владивосток
Краткое доказательство гипотезы Билля
Гипотеза Билля формулируется следующим образом: неопределенное уравнение: не имеет решения в целых положительных числах А, В, С, при условии, что больше 2.
Системы линейных уравнений
Решение системы линейных уравнений по правилу Крамера и с помощью обратной матрицы. Нахождение ранга матрицы. Вычисление определителя с помощью теоремы Лапласа. Исследование на совместимость системы уравнений, нахождение общего решения методом Гауса.
Гипотеза Биля
Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.
Вычитание сил инерции и тяготения
Здесь речь пойдет о том,что изменяя величину деформации, можно влиять на действующую силу тяготения; уменьшая величину инерционной деформации, можно ликвидировать инерцию или придать ей отрицательные свойства...
Моделирование структурных схем в среде SIMULINK пакета MATLAB
Практические навыки моделирования структурных схем в среде SIMULINK пакета MATLAB. Построение графиков функций в декартовой системе координат. Решение систем линейных и нелинейных уравнений. Работа с блоками Sum, Algebraic Constraint, Gain, Product.
Адамар Жак
В теории чисел Адамар доказал асимптотический закон распределения простых чисел (высказанный П. Л. Чебышевым). В теории дифференциальных уравнений занимался задачей О. Коши для гиперболических уравнений.