Паршаков Евгений Афанасьевич
Небесные тела можно разделить по плотности на две большие группы: силикатные тела с плотностью около 3 г/см3 и выше, и ледяные и газовые тела с плотностью около 2 г/см3 и ниже. В общем, плотность, по мере увеличения небесных тел, кроме, по-видимому, планет-гигантов, увеличивается. Растет плотность и по мере приближения небесных тел к Солнцу, да и к другим центральным телам. Среди планет земной группы и вообще всех силикатных небесных тел аномально высокую плотность имеет Меркурий - 5, 4 г/см3, больше чем Марс - 3, 95 г/см3 и даже Венера - 5, 25 г/см3. Единственное, с чем можно увязать его большую плотность, это то, что Меркурий слишком близко находится от Солнца, а ранее находился еще ближе, поскольку в настоящее время Меркурий удаляется от Солнца под воздействием приливного механизма точно так же, как Луна удаляется от Земли.
Можно предположить, что в далеком прошлом Меркурий имел нормальную плотность, порядка 3, 7 - 3, 8 г/см3 и, соответственно, имел несколько большую массу и, особенно, размеры. Затем, после его максимального приближения к Солнцу, в недрах Меркурия начало разлагаться под влиянием большой температуры какое-то вещество. Можно предположить, что это был триолит (серное железо). При разложении триолита на железо и серу железо перемещалось к ядру, которое вследствие этого стало большим, чем даже у Земли, а сера выпаривалась на поверхность и диссипировала в межпланетное пространство, а затем на поверхность Солнца. К этому выводу может привести тот факт, что этот процесс в настоящее время, возможно, осуществл яется в недрах Ио под воздействием разогрева посредством мощного приливного трения в его теле, вызываемого Юпитером. Известно, что на поверхности Ио действуют серные вулканы.
Рост плотности объясняется осуществлением дифференциации глубинного вещества с выделением на определенном этапе развития небесных тел газов и их диссипацией. Плотность увеличивается и по причине сжатия, уплотнения веществ под воздействием усиливающейся силы гравитационного тяготения при увеличении массы небесных тел.
Увеличение плотности небесных тел с их увеличением и приближением к центральному телу является правилом для всех небесных тел кроме планет-гигантов, которые стоят особняком. В отличие от всех других небесных тел Солнечной системы газовые тела сохраняют значительную часть захваченной ими газовой компоненты, основной составляющей которой являются водород и гелий. В результате их плотность понижается. Но в то же время планеты-гиганты после окончания очередной галактической зимы теряют значительную часть своей атмосферы за счет усилившейся центробежной силы в экваториальной области и теряют ее различным образом.
Эти потери являются тем больше, чем быстрее вращаются планеты и чем протяженней является их атмосфера. Очевидно, следствием этого является тот факт, что Юпитер имеет большую плотность, чем Сатурн, а Нептун - большую, чем Уран, хотя бы, казалось, плотность планет-гигантов, с учетом их части атмосферы, должна с увеличением их массы и протяженности их атмосферы уменьшаться.
Другой причиной аномалий в росте плотности планет-гигантов является, возможно, то, что надоблачные слои атмосферы не учитываются при определении средней плотности планет и картина несколько искажается. Еще одной причиной ╚неправильного╩ изменения плотности у планет гигантов является, быть может, наличие фазовых изменений вещества под влиянием роста давления, а также температуры, например, сжижение, а может быть и затвердевание на поверхности Юпитера водорода и гелия. И, наконец, плотность различных планет-гигантов может отличаться и несколько различным химическим составом планет и их атмосфер. Ведь даже на различных материках Земли приповерхностные слои вещества значительно отличаются друг от друга содержанием различных полезных ископаемых: железной руды и т. д. То же самое, как можно предположить, имеет место и на различных планетах. Можно, например, предположить, что на Уране газовая компонента в процентном выражении несколько выше, чем на Нептуне, а на Сатурне выше, чем на Юпитере. На Юпитере аномально высокую плотность можно объяснить и следующим: как известно, в атмосфере Юпитера имеется огромное красное пятно овальной формы шириной около 15 - и длиной около 35 тыс. км. Выяснено, что это пятно является ни чем иным, как устойчивым вихрем с периодом вращения 6 ч. В зоне пятна наблюдается повышенное давление, вследствие чего вещество атмосферы, главным образом водород, но так же и другие вещества, посредством вихревого эффекта выбрасываются с большой скоростью в надатмосферное пространство. Можно предположить, что часть этого вещества, преимущественно водород, выбрасывается в межпланет ное пространство. Если это подтвердится в будущем, то это означает, что масса Юпитера постепенно уменьшается. А поскольку, в основном, выбрасывается в межпланетное пространство водород, то плотность Юпитера должна увеличиваться, что и имеет место в действительности. Возможно, в далеком прошлом масса Юпитера была намного больше, чем сейчас, быть может равнялась 350 или 400, или еще больше, земным массам.
Что же касается аномально высокой плотности Нептуна, то можно предположить, что раньше масса Нептуна была меньше массы Урана, скажем, равнялась 10-12 массам Земли. Остальное вещество принадлежало его спутнику, а ранее планете Тритону. Это вещество Нептун захватил у Тритона, разогрев его посредств ом механизма мощного приливного трения, так что испарявшееся на поверхности Тритона вещество - ледяная компонента - диссипировало и оседало на поверхность Нептуна благодаря его большому гравитационному притяжению.
Вследствие этого у Нептуна возник избыток ледяной компоненты и его плотность, сравнительно с Ураном, аномально возросла. Если это так, то плотность Тритона должна также аномально возрасти. Быть может, Тритон, как и Луна, Ио и Европа является силикатным спутником с плотностью около 3 г/см3. Плотность Нептуна возросла благодаря тому, что при увеличении массы и уплотнении вещества сократилась доля газовой компоненты. А плотность Тритона возросла вследствие того, что он из ледяного небесного тела превратился в силикатное или силикатно-ледяное тело.
Список литературы
Другие работы по теме:
Хлопок
Формула хлопка При сжигании хлопчатобумажная ткань горит быстро с запахом жженой бумаги. Остается черный пепел. При воздействии на хлопок индикаторами – окрашивает синюю лакмусовую бумажку в красный цвет.
Шерсть
Химических формул шерсть и натуральный шелк не имеют. При сгорании шерсть и натуральный шелк горят медленно с запахом жженых волос, образуя шарик черного цвета, который растирается в порошок.
Определение плотности твёрдых тел правильной формы
Исходные данные и расчетные формулы для определения плотности твердых тел правильной формы. Средства измерений, их характеристики. Оценка границы относительной, абсолютной погрешностей результата измерения плотности по причине неровности поверхности тела.
Видимое движение планет.
Издавна люди наблюдали на небе такие явления как видимое вращение звездного неба, смена фаз Луны, восход и заход небесных светил, видимое движение Солнца по небу в течение дня, солнечные затмения, изменение высоты Солнца над горизонтом в течение года, лунные затмения.
Происхождение комет
Мелкие кометы происходят преимущественно в Солнечной системе, главным образом на ее периферии, где количество комет, по-видимому, исчисляется многими миллиардами и триллионами.
Эксцентриситет
Небесные тела Солнечной системы, обращающиеся вокруг Солнца, тормозятся в газово-пылевой среде во время галактических зим неравномерно на протяжении всей своей орбиты.
Происхождение Солнца
Планета-гигант еще раньше произошла из ледяной планеты, а та - из кометы. Эта комета произошла на периферии Галактики одним из тех двух способов, которыми происходят кометы на периферии Солнечной системы.
Тихо Браге
Свою научную деятельность Тихо Браге посвятил наблюдениям неба. На небольшом острове Гвен он построил уникальную обсерваторию "Ураниборг" ("Небесный замок"), а позже "Звездный замок".
Искусственные спутники
Вокруг Земли обращается так много искусственных небесных тел, что в течение всего удобного для наблюдений времени суток - начиная с вечерних сумерек и кончая утренней зарей - можно видеть яркие спутники, рассекающие звездное небо.
Конденсация диффузной материи
Рост небесных тел происходит, за счет вычерпывания диффузной материи небесными телами, за счет падений на небесные тела Солнечной системы других, меньших по массе и размерам небесных тел; и за счет конденсации диффузной материи.
Глубинная дифференциация вещества
Вначале любое небесное тело, обращается ли оно вокруг звезд, планеты или вокруг центра Галактики по независимой от звезд окологалактической орбите, является недифференцированным телом, вследствие его малой массы и малых размеров.
Торможение небесных тел
Все движущиеся в газовой или иной среде тела, как известно, тормозятся, вследствие чего их скорость движения уменьшается. Это относится и к небесным телам Солнечной системы.
Спиральные рукава Галактики
Спиральные рукава Галактики играют огромную, как мы видели выше, роль в развитии небесных тел Солнечной системы, поэтому необходимо выяснить вопрос об их происхождении.
Классификация небесных тел
На первый взгляд, все небесные тела Солнечной системы имеют самые различные характеристики. Однако, все их можно по их составу разделить на три большие группы. К одной группе можно отнести наиболее плотные тела Солнечной системы.
Увеличение небесных тел
Рост небесных тел осуществляется тремя способами: падением на поверхность небесных тел других, меньших тел, которые, падая на их поверхность, увеличивают их массу.
Возраст небесных тел
Возраст небесных тел определяют разными методами. Самый точный из них состоит в определении возраста горных пород по отношению количества в ней радиоактивного элемента урана к количеству свинца.
Задача по Математике 5
Задача № 74 Случайная величина х задана функцией распределения. Требуется: 1) найти функцию плотности вероятности f(x); 2) найти математическое ожидание и дисперсию случайной величины х;
Гравитационное поле горизонтальной полуплоскости
Вертикальный уступ в реальных геологических условиях соответствует вертикальному сбросу, выклиниванию горизонтальных пластов различной плотности, границе крупного интрузивного образования на контакте с осадочными породами и т.п.
Применение спектрального анализа
Методом, дающим ценные и наиболее разнообразные сведения о небесных светилах, является спектральный анализ. Он позволяет установить из анализа света качественный и количественный химический состав светила, его температуру.
Астрономия
Астрономия — наука о Вселенной и населяющих ее объектах: планетах, звездах и гигантских звездных системах — галактиках. Название этой древней науки, изучающей небесные тела, образовано от греческих слов "астрон" — звезда и "номос" — закон.
Вселенная
Когда говорят о Вселенной, обычно понимают под этим понятием небесные тела, космическое пространство и все то, что его заполняет: газ, пыль, электромагнитное излучение и т. д.
Созвездие Рак
У древнего писателя Плиния Старшего есть такие строки: "В знаке Рака есть две малые звезды, называемые Ослятами, а среди них - маленькое облачко, которое называют Яслями".
Астрономия как наука 2
Астроно́мия — наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом[1]. В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды, кометы, метеориты, межпланетное вещество, звёзды и внесолнечные планеты (экзопланеты), туманности, межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры и многое другое.
Акронический восход
— последний восход звезды, который происходит после захода Солнца. В процессе годового движения Солнце перемещается среди звёзд прямым движением с запада на восток. Поэтому, если в какой-то начальный момент времени восход звезды происходил после захода Солнца, то со временем, по мере приближения Солнца к звезде, время восхода этой звезды будет всё ближе и ближе ко времени захода Солнца.
Градационная коррекция
изменение градационных кривых (градационных характеристик) воспроизводимого оригинала. Градационная коррекция может быть осуществлена ручной ретушью, фотомеханическим способом, средствами вычислительной техники.
Происхождение Солнца
Большинство исследователей в области космогонии, хотя и далеко не все, полагает, что Солнечная система возникла 4-5 млрд. лет назад и с тех пор не подвергалась значительным изменениям. Что Земля, как и другие планеты, была такой же самой, как сейчас и один и три, и пять миллиардов лет назад. Такой же были ее масса, расстояние от Солнца, наклонение плоскости земной орбиты к плоскости экватора Солнца, наклон плоскости земного экватора к плоскости ее орбиты, периоды ее осевого вращения и орбитального обращения и т. д.
Система небесных координат
Горизонтальная система небесных координат. Экваториальная система небесных координат. Эклиптическая система небесных координат. Галактическая система небесных координат. Изменение координат при вращении небесной сферы. Использование различных систем коорд