Реферат: работа - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

работа

Федеральное агентство по образованию

ГОУ ВПО «Саратовский государственный университет

имени Н.Г. Чернышевского»

Кафедра нелинейной физики


Колебания в системе связанных осцилляторов

Курсовая работа

студентки 1 курса факультета нелинейных процессов

****

Научный руководитель

профессор, д. ф.-м. н., ______________Ю. П. Шараевский

Заведующий кафедрой,

чл.-кор. РАН, проф.,

д. ф.-м. н. ______________ Ю. П. Шараевский


Саратов-2008

Содержание

Содержание 2

Введение 3

3

1. Два связанных осциллятора 4

1.1. Анализ системы двух связанных осцилляторов 4

1.2. Затухание в системе связанных осцилляторов 8

1.3. Связанные осцилляторы под действием гармонической силы. 10

2. Колебания системы со многими степенями свободы 12

2.1. Колебания системы N связанных осцилляторов 12

2.2. Колебательные цепи 13

4. Заключение 19

5. Список используемой литературы 20

Введение

В теории колебаний движение заряда в электрическом контуре или груза на пружине, можно описать уравнением линейного гармонического осциллятора. Но на практике в большинстве случаев приходится иметь дело не с одним осциллятором, а с более сложными системами - взаимодействующими между собой осцилляторами. В качестве примеров таких систем можно рассматривать колебания молекул в жидкостях и твердых телах, электрические цепи, состоящие из нескольких взаимосвязанных контуров, два математических маятника, связанные между собой пружиной.

Многие эффекты, проявляющиеся в системе с двумя степенями свободы, характерны для более сложных систем, поэтому осуществляется подробный анализ системы двух связанных осцилляторов. Такой подход позволяет перейти к рассмотрению большого, а затем и бесконечного числа связанных осцилляторов, осуществить переход к сплошной среде.

1. Два связанных осциллятора 1.1. Анализ системы двух связанных осцилляторов

Рассмотрим систему двух связанных осцилляторов на примере двух электрических контуров. Каждый контур состоит из конденсаторов с емкостью C, катушек индуктивности L1 и L2, связан с другим посредством общего конденсатора C1 (рис.1).

Пусть в первом контуре течет ток I1, во втором - I2. Пренебрегаем потерями энергии в контурах.

Тогда по первому закону Кирхгофа:

I = I1 + I2 Рис.1

или после интегрирования

q = q1 + q2, (1)

где q – заряд на обкладках конденсатора C1, q1, q2 – заряды на конденсаторах C; , .

Совершая обходы по каждому контуру в указанных на рис. 1 направлениях, получим уравнения:

и (2)

Уравнения (2) описывают систему связанных осцилляторов. Если 1/C = 0, т.е. отсутствует связь, тогда (2) переходит в систему двух независимых осцилляторов с собственными частотами и .

Рассматривая колебания в системе двух связанных математических маятников (рис.2), соединенных пружиной k, длиной l1 и l2 с одинаковыми массами m = m1 = m2, тогда уравнения движения запишутся в виде:

(3)

Как видно, уравнения (2) для контуров эквивалентны уравнениям (3), описывающим механическую систему. Рис.2

Способ связи осцилляторов, при котором в каждом из уравнений для несвязанных

систем появляются слагаемые, пропорциональные координате

второй системы, называется силовой связью (механические системы) или емкостной связью (колебательный контур) [1].

Аналогичным образом можно записать уравнения для системы двух связанных контуров с индуктивной связью:

Для механических систем такой способ связи называют инерционным [1].

Тип связи зависит от выбора обобщенных координат.[2 (лекция 22)] или другими словами выбором динамических переменных [1].

В общем виде уравнения движения для системы связанных маятников можно записать так [2]:

,

.

Уравнения (2) можно получить, исходя из уравнений Лагранжа – Максвелла (уравнения Лагранжа второго рода) [2]:

,

где T - энергия, - это обобщенная сила. Выражение называют так по аналогии с тем, что имеет место в декартовых координатах, где работа определяется как произведение (X – сила, - перемещение) [2].

Если - такие потенциальные силы, зависящие от , что

То уравнения для электрической цепи становятся следующими:

,

Где U - электрическая, а T – магнитная энергия, - токи, - заряды. При подстановки значений T и U в полученные уравнения приходим к уравнениям (2).


Сложим и вычтем уравнения (2), получим:

,

.

Для упрощения дифференциальных уравнений введем обозначения

и ,

откуда

и .

Пусть для простоты , тогда . И после преобразований получим:

, (4)

,(5)

где .

Т.о. q’ и q” - линейные комбинации обычных координат q1 и q2, которые называются нормальными координатами, и которым соответствуют нормальные частоты:

и ,

а соответствующие нормальным координатам гармонические колебания - собственные моды системы.

Следует отметить, что число независимых (нормальных) координат, необходимое и достаточное для однозначного определения положения системы называется числом степеней свободы системы.[2 (лекция 22)]

В случае, когда q’ = 0 (q1 = q2), колебания системы описываются уравнением (5), т.е. первая нормальная мода с частотой .ТокI1 = I2, в обоих контурах направлены либо по часовой стрелке, либо против нее. Следовательно, ток через конденсатор C1 не протекает. Если же q” = 0 (q1 = - q2), рассматривая уравнение (4), то возбуждается вторая мода с частотой и в любой момент времени через конденсатор C проходит удвоенный ток I1 (I2).

Т. о. уравнения (4), (5)можно свести к уравнениям двух независимых осцилляторов.

Обобщая: линейная консервативная система с N степенями свободы может быть представлена в виде набора N независимых осцилляторов.


Рассмотрим парциальные частоты в колебательном контуре.

Парциальной системой, соответствующей данной координате, является система, получаемая из исходной “закреплением” всех остальных координат [3].

“Закрепление” координат на примере уравнений (2) означает, что либо q1 = 0, либо q2 = 0.

В первом случае получим , во втором .

Т.о. парциальные частоты определяются следующим образом:

и . (6)

При эти частоты равны . Сравним их с нормальными частотами:

, (7)

т.о. парциальные частоты всегда лежат между нормальными.().

Двойное неравенство (7) наглядно демонстрирует, что введение связи в систему связанных осцилляторов увеличивает интервал между собственными частотами.


Перепишем уравнения (2) в соответствии с (6) в виде ():

и (8)

Общее решение выглядит следующим образом:

,

, (9)

При этом

,

.

Введем обозначение , коэффициент связи. Тогда последнее слагаемое, стоящее под корнем будет равным:

.

Связь между осцилляторами мала, если . При этом их колебания не зависят друг то друга. В случае амплитуда колебаний осцилляторов одинакова.

Сильная связь может возникнуть если при любых ρ, или при .

Рассмотрим передачу энергии в системе связанных осцилляторах.

Пусть в начальный момент времени был возбужден первый контур, полагая , имеем:

, , , .

Тогда, подставляя начальные условия в (9) и выражая через , получим решения:

,

.

Во второй формуле амплитуда переменная. Передача энергии от одного колебательного контура к другому за время сопровождается уменьшением амплитуды первого контура и увеличением Рис.3

амплитуды

второго. Получаются биения (рис.3).

1.2. Затухание в системе связанных осцилляторов

Введём затухания в линейную колебательную систему. В общем случае уравнения движения выглядят следующим образом [4]:

,

. (10)

Полагая, что , получаем характеристическое уравнение для системы 10:

Пусть - корни, тогда общее решение запишется в виде:

,

. (11)

Коэффициенты при каждой экспоненте связаны друг с другом соотношениями:

().

Когда нет трения, то и . Наличие затухания приводит к тому, что корни либо действительные, либо комплексно сопряженные. При малых и , (11) примет вид:

,

,

где

, ,

, ,

, , , .


Таким образом, если в системе есть затухания, то общее решение – сумма двух колебаний с частотами и , с комплексными амплитудами.

Рассмотрим затухающие колебания в LC – контуре.

Отличие такого контура от рассмотренного ранее – наличие электрического сопротивления, т.е. в колебательной системе происходит потеря энергии (в механических системах из-за трения).

В каждое уравнение добавляется новое слагаемое – падение напряжения на сопротивлении [2]:

и

Будем искать решение в виде , . При подстановки которых, получим

,

.

Причем, α, β и m – не известны. По отношению к α, и β эти уравнения линейны, имеют нетривиальное решение, когда детерминант равен нулю:


.

Развертывая детерминант, получаем уравнение 4-й степени:

В отсутствии сопротивления (трения) оба корня отрицательны, , где - действительная частота.

При наличии сопротивления корни либо действительные, либо комплексные, попарно сопряженные. Общее решение состоит из суммы двух колебаний с возрастающими или затухающими амплитудами.

В случае системы с сопротивлением происходит сдвиг фаз между колебаниями каждой из частот в обеих координатах.

Затухание в системе связанных осцилляторов может быть неодинаковым для разных мод, поскольку, например, конденсаторы “работают” для различных нормаль­ных колебаний по-разному[6]. Наконец, небольшое за­тухание никак не может повлиять на фундаментальные свойства нормальных колебаний – соответствие между числом нормальных мод и количеством колебательных степеней свободы.


1.3. Связанные осцилляторы под действием гармонической силы.

Пусть на осцилляторы действует внешняя гармоническая сила с частотой p.

Тогда уравнения движения в общем случае:

,

. (12)

Общее решение системы - сумма однородного (собственные колебания) и частного (правые части системы ненулевые) решений [1].

Решение ищем в виде:

,

.

Подставляя эти выражения в (12), получим:

,

. (13)

Детерминант системы

.

Если ∆=0, то в системе установятся свободные колебания, рассматривались ранее и также были определены для них нормальные частоты. Если ∆≠0, то для всех p система (13) имеет решение, причем однородные уравнения не имеют решения.

Решение уравнений системы (13):


, .

Резонансные кривые, изображенные на рис.4 позволяют сделать следующие выводы.

1. Пусть сила действует на первую парциальную систему, т.е. , , тогда возможно совпадение частоты внешней силы и парциальной частоты второго осциллятора - динамическое демпфирование [2], первый осциллятор не колеблется:

, .

2. Резонанс наступает при совпадении частоты внешней силы с одной из собственных частот системы, происходит неограниченный рост амплитуд в обоих осцилляторах.

3. при частоте внешней силы второй осциллятор не колеблется, это возможно, если связь носит смешанный характер.

Пусть сила действует на второй осциллятор, т.е. , , тогда

.

Для линейных систем справедлива теорема взаимности [2]: если на второй осциллятор действует сила , то движение первой координаты – такое же, как Рис.4

движение второй координаты, когда на первый осциллятор действует сила .

Она справедлива для линейных систем с любым числом степеней свободы, в том числе и для сплошных сред.

В электродинамике, например, теорема взаимности применяется в теории антенн.

2. Колебания системы со многими степенями свободы 2.1. Колебания системы N связанных осцилляторов

Рассмотрим систему n связанных осцилляторов.

Для этого воспользуемся уравнением Лагранжа [4]:

, ,

где каждому значению p соответствует одно из уравнений движения

Подставим в него значения кинетической и потенциальной энергий, которые определяются формулами:

и . (14)

Где и - симметрические матрицы, - обобщенные координаты. Кинетическая и потенциальная энергии положительны при колебания вблизи положения равновесия.

Подставляя (14) в уравнения Лагранжа, уравнения движения примут вид:

. (15)

Делая подстановку , получаем систему алгебраических уравнений

, (16)

которая имеет ненулевые решения, если детерминант равен нулю:

. (17)

Корни уравнения (17) действительные или комплексные попарно сопряженные ().

Если известны собственные значения, т.е. решение (16), то общее решение уравнений движения представляется в виде:

(18)

Положим , и , тогда (18) примет вид:

. (19)

Уравнение (19) содержит 2n постоянных и . Подстановка частного решения позволяет получить две системы уравнений, откуда в свою очередь, общее решение (19) содержит 2n независимых постоянных:

. (20)

Согласно формулам (20), общее решение представлено n гармониками, входящими в каждую координату. При сложении эти гармоники не влияют друг на друга.

- коэффициенты распределения [4], матрица которых определяет распределение амплитуд отдельных гармоник во всех координатах.

Из уравнения (16) для z-го колебания

,

зная распределение амплитуд z-го колебания (элементы z-го столбца матрицы ), можно перейти к выражению для частоты:

(21)

Формула (21) позволяет установить зависимость частоты от условий задачи [2].

Если уравнение имеет корень n-ой кратности, т.е. существует единственная частота, следует обращение в нуль всех элементов детерминанта и

.

Такое соотношение между кинетической и потенциальной энергиями выполняется, например, когда связи между координатами отсутствуют либо в системе присутствуют как инерционная, так и силовая связи. При наличии связей одного типа корней n-ой кратности в системе нет.

Таким образом, у системы с N степенями свободы имеется N мод. Каждой моде соответствует своя частота и своя фазовая постоянная, определяемая начальными условиями.


2.2. Колебательные цепи

Система связанных осцилляторов, в которой они упорядочены так, что каждый из осцилляторов связан только с двумя соседями (за исключением двух крайних), называется цепочкой осцилляторов [1].

На рис.5 изображены примеры колебательных цепей с силовой связью (а, б) и индукционной (в, г).

Колебательные цепи – в зависимости от их реакции на периодические возмущения на входе – называют фильтрами высоких и низких частот [4].

Фильтры низких частот (рис. 5а, 5б), через которые могут проходить только возмущения с частотами, лежащими ниже определенной граничной частоты. Фильтры высоких частот (рис. 5в, 5г) пропускают колебания, частота которых лежит выше . Рис. 5

некоторой граничной частоты

В качестве примеров фильтров можно привести широко распространенные радиотехнические цепочки, электронные приборы СВЧ диапазона и модель кристалла, в котором пружины заменяют межатомные связи.

Рассмотрим схему, изображенную на рис. 5а. Пусть имеется N+2 шара, и оба конца цепи закреплены. Масса каждого шара – m и жесткость пружины k. Тогда уравнение движения для n-ой массы можно записать так:

. (22)

Введем комплексные амплитуды :

.

Подставляя это решение в (22):

, , (23)

Положим распределение амплитуд колебаний в виде , где A и - некоторые постоянные. Тогда из уравнения (23) следует:

(24)

Если цепочка состоит из механических маятников, то при , (24) примет вид:

(24’)

Оба конца цепи находятся в положении равновесия: и . Из этого условия находим, что , или

, . (25)

Тогда собственные частоты определяются следующим образом:

.


Спектр – совокупность всех собственных частот системы [1]. Расстояние между любыми двумя точками спектра равно . На рисунке 6, демонстрирующем зависимость , точками отмечено положение собственных частот, лежащих в интервале между крайними точками

и .

Рис.6

Распределение собственных частот вдоль оси неоднородно. Увеличивая количество осцилляторов N, плотность проекций точек, изображающих собственные частоты, на эту ось будет возрастать быстрее около крайних точек.


Если , а движущиеся элементы находятся в ограниченном объеме, то расстояние между соседними элементами стремится к нулю. Система ведет себя так, как если бы она была непрерывной, т.е. движение соседних элементов почти одинаково.

Если в нашем случае увеличивать количество масс и пружин, а их самих уменьшать, то рассматриваемая цепь переходит в струну. Картина колебаний принимает вид стоячих волн.

Стоячие волны являются нормальными модами непрерывных систем [5]. Непрерывная система имеет бесконечное число степеней свободы и соответственно бесконечным числом мод.

Общее движение системы может быть описано как суперпозиция ее мод. Амплитуды и фазовые константы определяются из начальных условий.


Назовем длиной волны – расстояние вдоль системы между двумя осцилляторами, которые колеблются в одинаковой фазе [1].

Тогда для j-го колебания можно записать:

,

где d – расстояние меду соседними осцилляторами, определяется формулой (25), - длина волны j-го колебания. Этот параметр для колебаний в пространстве имеет такой же смысл, что и период T для колебаний во времени.

Длина всей цепочки равна (N+1)d. По длине системы должно укладываться целое число полуволн – условие резонанса, которое выглядит следующим образом:

.

Учитывая предыдущее уравнение, получим (25).

Вводя волновое число k, равное , имеем .

Следовательно, колебания цепочки осцилляторов можно описывать в терминах стоячих волн.

Рассмотрим спектр колебаний цепочки с большим числом элементов, например модель кристалла. В любом бесконечно малом интервале частот будет содержаться большое число собственных мод . Поэтому вводится функция - плотность распределения собственных частот [1]:

.

Тогда средняя энергия осциллятора, находящегося в состоянии теплового равновесия при температуре T определяется как:

,

где - постоянная Планка, - постоянная Больцмана.

Откуда энергия внутренней среды равна

Это полученное соотношение применяется, например, в теории теплоемкости кристаллов при известном .

При , используя формулы (24) и (25) и , получаем:

.

Вблизи границ спектра обращается в бесконечность(рис.7):

, ,

, .

Обращение в бесконечность функции в критических точках – особенность одномерных цепочек. Для колебаний в двумерных (пластины, мембраны) и трехмерных кристаллических решеток - остается конечной, а ее производная терпит разрыв. Рис.7

Вид функция зависит от структуры колебательной цепи, т.е. от количества элементов цепи разных типов на одном периоде системы и от их масс.


3. Переход к сплошной среде


Рассмотрим цепочку связанных осцилляторов – одномерную кристаллическую решетку, представляющую собой упорядоченную структуру. Другими примерами такой структуры являются цепочка, состоящая из LC-элементов, набор связанных пружинами маятников. Смещая в такой системе один элемент от положения равновесия, получаем смещение соседних элементов, т.е. по всей структуре побежит волна.

Если в уравнении Клейна-Гордона, которое описывает распространение одномерных волн в среде с дисперсией [1]:

, (26)

где (связанные маятники массой m, имеющие собственную частоту , связь между которыми осуществляется пружинами с жесткостью ), устремить к нулю, то получим

. (27)

Это классическое волновое уравнение. Любая одномерная волна может быть описана решением (27).

Подставляя в (26) имеем

. (28)

- сдвиг фазы волны при смещении вдоль цепочки осцилляторов на одну ячейку.

Уравнение (28) получается из (24’), если .

Дисперсионное уравнение, описывающее связь и k, в общем случае выглядит следующим образом:

.

Дисперсия существует, описывается уравнением (28), что обусловлено существованием пространственного и временного собственного масштабов ( и a)..

ka<<1, (a<<) справедливо для достаточно длинных волн, т.е. цепочку осцилляторов можно рассматривать как одномерную сплошную среду, описываемую уравнением (26).

Наличие дисперсии обусловлено существованием собственного временного масштаба .

При , , т.е. длина маятника и не влияет на его колебание, следовательно, получаем сплошную среду без дисперсии (отсутствие пространственного и временного масштабов). Каждый маятник имеет собственный период , «среда» не будет воспринимать частоту меньше собственной.

В случае в уравнении (24’) соотношение между a и может быть любым (), тогда получаем цепочку связанных шариков. Дисперсия в системе сохраняется, она существенна, пока a не мало по сравнению с .

Существование дисперсии в среде связанно с наличием в ней собственных, не зависимых от параметров волны пространственных и временных масштабов.

4. Заключение

В данной работе были рассмотрены колебания в системе двух связанных осцилляторов, проведен анализ этой системы в случае свободных колебаний и при воздействии внешней силы. Рассмотрено явление внутреннего резонанса, при котором отдельные подсистемы (парциальные) обмениваются энергией друг с другом, а также явление динамического демпфирования, которое используется на практике для гашения «вредных» колебаний.

Выводы, относящиеся к колебаниям в системе с двумя степенями свободы, обобщаются на случай колебаний в более сложных электрических схемах или механических вибраций.

В работе осуществлен переход от колебательной цепочки, набора элементарных осцилляторов, к одномерной сплошной среде.

С помощью некоторых цепочек можно реализовать практически любую дисперсионную зависимость, на основе которых исследуется распространение волн в различных средах.


5. Списокиспользуемой литературы

[1] Трубецков Д.И., Рожнев А.Г. Линейные колебания и волны. – М.: Физматлит, 2001.

[2] Мандельштам Л.И. Лекции по колебаниям. Полное собрание трудов. Т. 4. –М.:Изд-во АН СССР, 1957.

[3]Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. – М.: Ижевск: НИЦ Регулярная и хаотическая динамика. 2000.

[4] Магнус К. Колебания. – М.:Изд-во Мир, 1982.

[5] Крауфорд Ф. Волны. Берклеевский курс физики. Т. 3. – М.: Наука, 1974.

[6] Козлов С.Н., Зотеев А.В. колебания и волны. Волновая оптика. – М.: Физический факультет МГУ, 2006.