М
ИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ
Кафедра РЭС (РТС)
КОНТРОЛЬНАЯ РАБОТА
По курсу «Методы проектирования и оптимизации РЭ
A»
Вариант №7
Выполнил:
ст.гр. РТз – 98 – 1
Чернов В.В.
Шифр 8209127
|
Проверил:
Карташов В. И.
____________________
|
Харьков 2003
Задание 1.
Выполнить моделирование на ЭВМ базовой случайной величины (БСВ) Х. Получить выборки реализаций БСВ объемом n = 170, 1700. Для каждого случая найти минимальное и максимальное значения, оценить математическое ожидание и дисперсию. Сравнить полученные числовые характеристики с теоретическими значениями.
Решение
Базовой называют случайную величину, равномерно распределенную на интервале (0,1). Моделирование производится при помощи функции rnd(m) пакета MathCad 2000, возвращающей значение случайной величины, равномерно распределенной в интервале 0xm.
а) для выборки объемом 170 (рис. 1.1): Xmin = 0.0078, Xmax = 0.996.
Первый начальный момент (математическое ожидание) равен среднему арифметическому значений выборки:
МХ
= 0.502 , (1.1)
второй центральный момент (дисперсия):
D = 0.086 , (1.2)
среднеквадратичное отклонение:
s = 0.293 . (1.3)
Рисунок 1.1 Выборка объемом 170.
Для выборки объемом 1700 (рис. 1.2): Xmin
= 0.0037, Xmax
= 0.998,
МХ
= 0.505 , (1.4)
D = 0.085 , (1.5)
s = 0.292 . (1.6)
Рисунок 1.2 Выборка объемом 1700.
Теоретически значения математического ожидания и дисперсии БСВ рассчиты-ваются из определения плотности распределения вероятности:
pравн
(x) = , (1.7)
математическое ожидание:
Mx
= 0.5 , (1.8)
дисперсия:
Dx
=
=0.083 , (1.9)
что хорошо совпадает с результатами моделирования (1.1) – (1.5).
Задание 2.
Получить выборку реализаций БСВ объемом n = 1700. Построить гистограмму распределений и сравнить ее с плотностью распределения равномерно распределенной случайной величины.
Решение
а) выборка получается аналогично Заданию 1(рис. 2.1):
Рисунок 2.1 Выборка объемом 1700
Приняв Xmin = 0, Xmax = 1, разбиваем интервал на q = 10 равных промежутков, каждый из которых равен:
DX = . (2.1)
Количества выборок, попадающих в каждый из интервалов, частоты попадания, оценки плотности сведены в табл. 2.1. Гистограмма распределений представлена на рис. 2.2. Как видно, она достаточно хорошо совпадает с равномерным законом распределения (1.7).
Таблица 2.1 Результаты оценки плотности распределения
Номеринтер-вала |
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
|
10
|
Диапа-зон значе-ний |
0-0.1 |
0.1-0.2 |
0.2-0.3 |
0.3-0.4 |
0.4-0.5 |
0.5-0.6 |
0.6-0.7 |
0.7-0.8 |
0.8-0.9 |
0.9-1 |
Коли-чество попа-даний |
151 |
174 |
149 |
189 |
190 |
161 |
166 |
182 |
177 |
161 |
Часто-та по-пада-ния Pi
|
0.089 |
0.102 |
0.088 |
0.111 |
0.112 |
0.095 |
0.098 |
0.107 |
0.104 |
0.095 |
Оцен-ка плот-ности
pi
|
0.888 |
1.024 |
0.876 |
1.112 |
1.118 |
0.947 |
0.976 |
1.071 |
1.041 |
0.947 |
Рисунок 2.2 Гистограмма распределений
Задание 3.
Получить выборку БСВ объемом n = 1700, По этой выборке проверить свойства независимости полученной случайной последовательности (вычислить 10 значений коэффициента корреляции).
Решение
а) снова получим выборку значений БСВ объемом n = 1700 (рис. 3.1):
Рисунок 3.1 Выборка объемом 1700
б) значения математического ожидания и дисперсии:
M = 0.512 , (3.1)
D = 0.088 . (3.2)
в) функция корреляции:
R(j) = , (3.3)
значения R(j) для j = 1…10 приведены в табл. 3.1 , значение R(0) = 0.088 совпадает с дисперсией.
Таблица 3.1 Значения функции корреляции:
j
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
R(j)
|
-9.6·10-4
|
3.53·10-3
|
2.7·10-4
|
4.24·10-3
|
-1.73·10-3
|
6.61·10-4
|
4.11·10-4
|
6.74·10-5
|
3.95·10-4
|
1.12·10-3
|
Задание 4.
Выполнить моделирование случайной величины, распределенной по закону Релея. Объем выборки n = 17, s2
= 27.
Решение
Ддя получения случайной величины с заданным законом распределения из БСВ применим метод обратной функции:
а) для распределения Релея
p(x) = (4.1)
случайная величина
x = F(x) = (4.2)
равномерно распределена в интервале 0…1, и может быть задана с помощью БСВ. Решив уравнение (4.2) относительно x, получаем случайную величину, распределенную по закону (4.1):
xi
= ,
xi
= , (4.3)
где xi
– значения выборки БСВ
Результат моделирования случайной величины xi
представлен на рис. 4.1:
Рисунок 4.1 Выборка случайной величины, распределенной по закону Релея
СПИСОК ЛИТЕРАТУРЫ
1. Вентцель Е. С.
Теория вероятностей. М. Физматгиз, 1962. – 246 с.
2. Тихонов В. И. и др.
Примеры и задачи по статистической радиотехнике. М. – Сов. радио, 1970. – 600 стр.
3. Трохименко Я.К., Любич Ф.Д.
Радиотехнические расчеты на ПК: Справочник. М. – Радио и связь, 1988. – 304 с.
Другие работы по теме:
работа по курсу "Математическая статистика"
Метод статистических испытаний (метод Монте-Карло) заключается в моделировании требуемой случайной величины с помощью выборки большого объема. При этом вероятность попадания рассматриваемой случайной величины в заданную область q определяется, исходя из соотношения
Теория вероятности и математическая статистика
Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
Теория вероятности
Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
Шпаргалка по Теории Вероятности
1) свойство вероятности: 20 стр. Вероятность невозможного события равна 0, т.е. Вероятность достоверного события равна 1, т.е. Для любого события , т.к.
Задача по Математике 5
Задача № 74 Случайная величина х задана функцией распределения. Требуется: 1) найти функцию плотности вероятности f(x); 2) найти математическое ожидание и дисперсию случайной величины х;
Вычисление случайных величин
Задача №1. Двумерная случайная величина (X,Y) имеет равномерное распределение вероятностей в треугольной области ABC: где S – площадь треугольника ABC.
Задачи по Математике
ЗАДАЧИ КОНТРОЛЬНОЙ РАБОТЫ Задачи № 1-10. Решить систему линейных алгебраических уравнений тремя способами: 1) методом Крамера, 2) с помощью обратной матрицы, 3) методом Гаусса.
Передаточная функция дискретной системы
Определение связи между выходом и входом для непрерывных систем. Вычисление передаточной функции и основы структурного метода дискретной системы. Расчет передаточной функции дискретной системы с обратной связью. Передаточные функции цифровых алгоритмов.
Теория вероятностей
Основы комбинаторики. Комбинаторика это раздел математики в котором изучается вопрос о том сколько различных комбинаций подчиненных тем или иным условиям можно составить из конечного числа различных элементов.
Матожидание, дисперсия, мода и медиана
Математическое ожидание и его свойства. Одной из важных числовых характеристик случайной величины является математическое ожидание . Введем понятие системы случайных величин. Рассмотрим совокупность случайных величин
Ряд распределения функция распределения
Задача 1 (5) Производится контроль партии из 4 изделий. Вероятность изделия быть неисправным равна 0,1. Контроль прекращается при обнаружении первого неисправного изделия. Х – число обследованных приборов. Найти:а) ряд распределения Х б)функцию распределения F(X), в ответ ввести F(3.5). в) m(x) г) d(x) д) p(1.5<X<3.5).
Вычисление случайных величин
Алгебраический расчет плотности случайных величин, математических ожиданий, дисперсии и коэффициента корреляции. Распределение вероятностей одномерной случайной величины. Составление выборочных уравнений прямой регрессии, основанное на исходных данных.
Предельные теоремы. Характеристические функции
Теория вероятностей и закономерности массовых случайных явлений. Неравенство и теорема Чебышева. Числовые характеристики случайной величины. Плотность распределения и преобразование Фурье. Характеристическая функция гауссовской случайной величины.
Основы теории вероятностей
Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.
Теория вероятности
Контрольная работа по дисциплине: Теория вероятностей 2009г. Контрольная работа № 1 Вариант 1. Задача № 1. Условие: Из 10 изделий, среди которых 4 бракованные, извлекают 3. Найти вероятность того, что среди них одно бракованное.
Геометрическое и гипергеометрическое распределение
Геометрическое распределение. Определение. Дискретная случайная величина Х=т имеет геометрическое распределение, если она принимает значения 1,2,..., т... (бесконечное, но счетное множество значений) с вероятностями
Расчет переходных процессов в дискретных системах управления
Соотношение между входным и выходным сигналом дискретной системы автоматического управления. Дискретное преобразование единичного воздействия, функция веса дискретной системы. Определение связи между переходной и функцией веса дискретной системы.
Линии задержки
Моделирование прямоугольного импульса с определенной длительностью фронта. Синтезирование электрической принципиальной схемы с учетом параметров элементов. Графики входных и выходных напряжений. Влияние длительности фронта на искажение выходного сигнала.
Дискретные системы радиоавтоматики
Передаточные функции дискретных систем как отношение z-изображений выходной и входной величин при нулевых начальных условиях. Определение передаточной функции дискретной системы при нулевом значении флюктуационной составляющей. Использование фиксатора.
Моделирование линейных систем
Решение задачи на построение имитационной модели статической линейной системы, имеющей три входа и один выход. Предполагается, что на систему действуют случайные возмущения, результатом которых являются случайные составляющие с нормальным разделением.