Лабораторная работа №4
Исследование системы автоматического регулирования угловой скорости двигателя внутреннего сгорания (дизеля)
Цель работы: изучить САР угловой скорости двигателя внутреннего сгорания (дизеля).
Содержание отсчета.
Схема САР угловой скорости двигателя внутреннего сгорания (дизеля).
Cтруктурная схема САР угловой скорости двигателя внутреннего сгорания (дизеля).
Cтруктурная схема САР угловой скорости двигателя внутреннего сгорания (дизеля) в обозначениях Simulink.
Переходные (временные) характеристики САР по управляющему воздействию xзад=1(t) и возмущающему воздействию MH=1(t). Численные значения показателей качества переходных процессов.
ЛАХ и ЛФХ разомкнутой САР угловой скорости двигателя внутреннего сгорания (дизеля) для заданных численных значений параметров передаточных функций.
Численные значения запасов устойчивости по амплитуде и по фазе, полученные по ЛАХ и ЛФХ.
АФЧХ САР угловой скорости двигателя внутреннего сгорания (дизеля). Численные значения запасов устойчивости, полученные по АФЧХ.
Графики функциональных зависимостей L=f(k3) и =f(k3).
Рациональное значение k3.
Графическая зависимость времени переходного процесса по управляющему воздействию от величены Т4.
Рациональное значение Т4.
Устройство системы:
На рис. 1 изображена САР угловой скорости двигателя внутреннего сгорания (дизеля) с внутренней изодромной обратной связью. Здесь: Д -дизель; МП –механическая передача; ЦБМ - центробежный маятник; ГУ –гидроусилитель; СМ –сервомотор; К –катаракт; П –пружина.
Работа системы.
В установившемся режиме определенному моменту нагрузке МН на валу дизеля соответствует некоторая подача топлива, зависящая от положения рейки топливного насоса, которую перемещает сервомотор СМ. Если нагрузка по какой-либо причине уменьшится, тогда угловая скорость дизеля возрастет, грузы ЦБМ разойдутся и переместят муфту, а вместе с нею и золотник ГУ. Рабочая жидкость поступит в СМ и он начнет уменьшать подачу топлива. В первый момент времени вместе с поршнем СМ переместятся поршень и цилиндр катаракта К, обратная связь на ГУ сработает как жесткая. Однако затем под влиянием пружины П цилиндр К будет перемещаться вверх, а жидкость в цилиндре К через отверстия в поршне перетечет из верхней полости в нижнюю. Жесткая связь между СМ и ГУ нарушится, движение поршня СМ прекратится лишь тогда, когда угловая скорость дизеля полностью восстановится до исходного уровня. Если нагрузка на валу двигателя возрастет, действие системы будет направлено на увеличение подачи топлива и восстановление исходной скорости.
X1
Рис.1. Система автоматического регулирования угловой скорости двигателя внутреннего сгорания (дизеля).
Рис.2. Cтруктурная схема системы автоматического регулирования угловой скорости двигателя внутреннего сгорания (дизеля)
Передаточные функции звеньев САР:
где - ошибка регулирования; ki- коэффициенты усиления; Ti-постоянные времени; хзад- заданная угловая скорость; х1- угловая скорость дизеля; х2-перемещение муфты ЦБМ; х3- перемещение рейки топливного насоса; х4- перемещение цилиндра катаракта К; х5- перемещение золотника ГУ; МН- момент нагрузки на валу двигателя.
Числовые значения параметров системы:
k1=10; k1=2; k2=2; k3=0,9; k3=0,1; k3+k3=1; T1=3 c; T2=2 c; T4=0; T4=1 c.
Рис. 3. Cтруктурная схема САР угловой скорости двигателя внутреннего сгорания (дизеля) в обозначениях Simulink.
Рис. 4. Переходные (временные) характеристики САР по управляющему воздействию xзад=1(t) и возмущающему воздействию MH=1(t). Численные значения показателей качества переходных процессов.
Рис. 5. ЛАХ и ЛФХ разомкнутой САР угловой скорости двигателя внутреннего сгорания (дизеля) для заданных численных значений параметров передаточных функций.
Таблица 1
K3 | 0,01 | 0,02 | 0,03 | 0,04 | 0,05 | 0,06 | 0,07 | 0,08 | 0,09 | 0,1 |
L | 21,8 | 15,7 | 12,1 | 9,57 | 7,56 | 5,91 | 4,5 | 3,27 | 2,17 | 1,18 |
φ | 66 | 48,6 | 36,7 | 28,2 | 21,7 | 16,6 | 12,4 | 8,83 | 5,78 | 3,11 |
t nn | 19,6 | 23,6 | 29,4 | 35 | 48 | 60 | 72,1 | 96,8 | 146 | 264 |
Численные значения запасов устойчивости по амплитуде и по фазе, полученные по ЛАХ и ЛФХ.
Рациональное значение К3 = 0,02 при L≥ 15дБ и φ≥ 450
Графики функциональных зависимостей L=f(k3) и =f(k3).
Таблица 2
T4 | 0,5 | 1 | 1,5 | 2 | 2,5 | 3 |
t nn | 32,1 | 23,6 | 25 | 14,7 | 18 | 22,5 |
Рациональное значение T4 = 2 при Tnn –min
Графическая зависимость времени переходного процесса по управляющему воздействию от величены Т4.
Рис. 6. АФЧХ САР угловой скорости двигателя внутреннего сгорания (дизеля). Численные значения запасов устойчивости, полученные по АФЧХ.
Другие работы по теме:
Моделирование асинхронного двигателя
Угловая скорость вращения магнитного поля. Математическая модель асинхронного двигателя в форме Коши, а также блок-схема его прямого пуска с использованием Power System Blockset. Зависимость угловой скорости ротора от величины электромагнитного момента.
Двигатели внутреннего сгорания
Доклад на тему: Двигатели внутреннего сгорания. Доклад подготовил: ученик ___ класса школы № ___ Ф.И.О. г. Нижний Новгород 2002 год. Один из самых распространенных двигателей –
Колебания пусковой установки
хема установки: Рис.1 Задание на проект: Пусковая установка находится на корабле, совершающем колебания (угол - стационарная функция известного вида.)
Двигатели постоянного тока
Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне. Свойства двигателя постоянного тока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.
Тепловой расчет двигателя
Введение Специалист по энергообеспечению предприятий АПК в своей практической деятельности нуждается в знаниях теоретических основ конструкции и проблем в эксплуатации поршневых двигателей внутреннего сгорания, насосов, вентиляторов, компрессоров. В технологических процессах сельскохозяйственного производства наиболее распространённым силовым агрегатом или тепловой машиной является поршневой двигатель внутреннего сгорания (ДВС).
Кинетические расчеты
Закон изменения угловой скорости колеса. Исследование вращательного движения твердого тела вокруг неподвижной оси. Определение скорости точки зацепления. Скорости точек, лежащих на внешних и внутренних ободах колес. Определение углового ускорения.
Расчет основных параметров двигателя постоянного тока
Отображение двигателя в режиме динамического торможения. Расчет пускового реостата и построение пусковых характеристик для двигателя постоянного тока с параллельным возбуждением. Запись уравнения скоростной характеристики с учетом требуемых параметров.
Расчет процесса горения газообразного топлива
Расчет теоретического объёма расхода воздуха, необходимого для горения природного газа и расчет реального объёма сгорания, а также расчет теоретического и реального объёма продуктов сгорания. Сопоставление расчетов, используя коэффициент избытка воздуха.
Расчет параметров вентильного электропривода
Принцип действия вентильного электропривода. Формирование вращающего момента, результирующей намагничивающей силы. Электрическая схема переключения полюсов вентильного электропривода. Моделирование переходных процессов. Суммарный момент возмущения.
Общие характеристики двигателя внутреннего сгорания
В наши дни на автомобили в основном устанавливается двигатель внутреннего сгорания. Специалисты-профессионалы отмечают достаточно сложное его устройство. Для того чтобы остановить свой выбор, при покупке автомобиля, на какой-то конкретной версии, необходимо использовать технические характеристики двигателя внутреннего сгорания для анализа устройства всего автомобиля.
Расчет тяговой характеристики трактора
Регулярная характеристика дизеля для колесного трактора. Максимальная угловая скорость вала двигателя. Передаточные числа трансмиссии для диапазона рабочих скоростей. Максимальная крюковая сила на каждой передаче при максимальном крутящемся моменте.
Циклы двигателя внутреннего сгорания
адача № 1 Циклы двигателя внутреннего сгорания Термодинамический цикл поршневого ДВС представляет собой повторяющуюся замкнутую последовательность обратимых термодинамических процессов, каждый из которых приближенно отображает известные из опыта особенности реальных процессов происходящих в реальном двигателе.
Двигатель внутреннего сгорания
● РЕФЕРАТ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ Двигатель внутреннего сгорания (ДВС) – устройство, преобразующее тепловую энергию, получаемую при сгорании топлива в цилиндрах, в механическую работу.
Двигатель внутреннего сгорания
Двигатель внутреннего сгорания (ДВС) – устройство, преобразующее тепловую энергию, получаемую при сгорании топлива в цилиндрах, в механическую работу.
Моделирование пуска асинхронного двигателя
Особенности разработки асинхронного электродвигателя с короткозамкнутым ротором типа 4А160S4У3 на основе обобщённой машины. Расчет математической модели асинхронного двигателя в форме Коши 5. Адекватность модели прямого пуска асинхронного двигателя.
Баллистическая ракета РД-583 (РН Зенит-3)
Характеристика прототипа летательного аппарата: компоненты топлива, тяга двигателя и давление в камере сгорания. Краткие теоретические сведения о ракете Р-5, проведение термодинамического расчета двигателя. Профилирование камеры сгорания и сопла.
Двигатель ТВ2-117 и его модификации
Самарский Государственный Аэрокосмический Университет имени С.П. Королёва. Национально исследовательский институт. Реферат по учебной дисциплине
Изучение регулятора УРАН-1М
Автоматизация горных комбайнов и комплексов. Функциональная схема регулятора УРАН. Защита двигателя от "опрокидывания" (остановки). Стабилизация значения тока нагрузки путём автоматического изменения скорости подачи. Цепи дистанционного управления.
Площадь треугольника
Методика нахождения уравнения прямой исследуемого треугольника и параллельной ей стороне с использованием углового коэффициента. Определение уравнения высоты этого треугольника. Порядок и составление алгоритма вычисления площади данного треугольника.
Площадь треугольника
Задача Дано: треугольник с вершинами в точках А [4; 0] B [3; 20] и C [5; 0]. Найти: Уравнение прямой АВ; Уравнение высоты СD, проведенной к стороне АВ; Уравнение прямой СЕ, параллельной стороне АВ;
Полуподводные лодки
Еще И.Ф. Александровский, убедившись в малой мощности пневматического двигателя своей подводной лодки и малой подводной скорости, решил выступить с идеей полуподводной лодки - малозаметного надводного судна, большая часть которого находится под водой.
Айзерман Марк Аронович
АЙЗЕРМАН Марк Аронович (1913-92), российский ученый в области теории управления, представитель первого поколения кибернетиков в нашей стране, доктор технических наук.
Дизель (Diesel), Рудольф
Наблюдения за состоянием газов при их резком сжатии и расширении привели Дизеля к идее безыскрового воспламенения газовой смеси в цилиндре двигателя.