Периодический закон и периодическая система химических элементов

Рефераты по химии » Периодический закон и периодическая система химических элементов

ТЕМА III


ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА

ХИМИЧЕСКИХ ЭЛЕМЕНТОВ


Основой современной химии является открытый в 1869 году Д.И.Менделеевым периодический закон, графическим изображением которого является таблица периодической системы (ПС).

Согласно теории строения атома главной характеристикой атома является положительный заряд ядра, который определяет число электронов в атоме и его электронное строение. Химические свойства атомов и их соединений определяются главным образом строением внешних энергетических уровней . Заряд ядра атома определяет все свойства элемента и его положение в ПС.

Поэтому современная формулировка ПЗ такова:

Свойства атомов химических элементов, а также состав и свойства образуемых ими простых и сложных веществ находятся в периодической зависимости от зарядов атомных ядер.

Возрастание заряда ядра атомов элементов от +1 до +118 приводит к постепенной
"застройке" электронной структуры атомов, при этом строение электронных оболочек периодически изменяется и повторяется, а так как свойства элементов зависят от строения электронной оболочки (в первую очередь - внешнего энергетического уровня), то и они периодически изменяются и повторяются. В этом заключается физический смысл ПЗ.

В ПС все химические элементы располагаются в порядке возрастания заряда ядра, которому соответствует т.н. атомный (порядковый) номер (ПН) химического элемента. В этом состоит физический смысл ПН.


Структура ПС связана с электронной структурой элементов. В зависимости от того, какой энергетический подуровень заполняется электронами последним, различают четыре семейства элементов: у элементов s- и р-семейств последними заполняются соответственно s и р-подуровни внешнего энергетического уровня: y d-элементов - d-подуровень предпоследнего энергетического уровня, у f-элементов - f-подуровень третьего снаружи энергетического уровня.


Семь горизонтальных рядов ПС называют периодами, вертикальные ряды - группами.

Период - последовательный ряд элементов, расположенных в порядке возрастания зарядов ядер их атомов), электронная конфигурация внешнего энергетического уровня которых изменяется от ns1 до ns2np6 (для 1 периода от 1s1 до 1s2). При этом номер периода совпадает с номером внешнего энергетического уровня. Т.е. у элементов одного периода электронами заполняется одинаковое число энергетических уровней, равное номеру этого периода. В этом заключается физический смысл номера периода.


Элементы, имеющие сходное электронное строение, объединены в колонках, называемых группами. У элементов А-групп (главных) последними заполняются s и р-подуровни внешнего энергетического уровня, у элементов В-групп (побочных) последними заполняются d- и f-подуровни второго и третьегоснаружи энергетических уровней соответственно.

Элементы А- и В-групп с одинаковым номером (например, VIA и VIB) различаются по свойствам, однако имеют определенное сходство (например, состав и свойства высших оксидов и гидроксидов: CrO3 и SO3 - кислотные оксиды, H2CrO4 и H2SO4 - сильные кислоты). Это связано с тем, что число валентных электронов (электронов, способных к образованию химических связей) у элементов А и В групп с одинаковым номером - одинаково, но для элементов А групп валентными являются электроны внешнего энергетического уровня, а у элементов В групп - электроны внешнего и предпоследних энергетических уровней. В этом основное различие между элементами групп А и В. Таким образом номер группы показывает число валентных электронов. В этом заключается физический смысл № группы.

Группа - это вертикальный ряд элементов, расположенных в порядке увеличения зарядов ядер атомов, которые содержат одинаковое число валентных электронов.


ПЕРИОДИЧНОСТЬ СВОЙСТВ АТОМОВ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ

И ИХ СОЕДИНЕНИЙ


Атомные и ионные радиусы:


С точки зрения квантовой механики атом не имеет строго определенных границ, поэтому установить его абсолютные размеры невозможно.

В химической практике наиболее широко используются так называемые эффективные радиусы - ковалентные, металлические, ионные - рассчитанные по экспериментальным данным из межъядерных расстояний в молекулах или кристаллах. Так, радиусы катионов всегда меньше радиусов соответствующих нейтральных атомов, а радиусы анионов - больше, т.к. катионы образуются при отдаче электронов, а анионы - при присоединении электронов (Rкат < Rат; Rан > Rат).

В настоящее время также используют понятие "орбитальный радиус" - теоретически рассчитанное расстояние от ядра до главного максимума электронной плотности внешней орбитали. Орбитальный радиус - характеристика свободного, химически несвязанного атома.

У элементов одной группы ПС при движении сверху вниз с возрастанием заряда ядра увеличивается число энергетических уровней, значит увеличивается расстояние от внешних электронов до ядра происходит увеличение радиуса атомов и ионов.

У элементов одного периода с возрастанием положительного заряда ядра при движении слева направо (→) увеличивается сила притяжения электронов к ядру, что приводит к уменьшению атомных и ионных радиусов.


Энергия ионизации. Энергия сродства к электрону (сродство к электрону):


Способность атомов химических элементов отдавать или присоединять электроны определяет проявление атомом металлических или неметаллических свойств. Эта способность зависит от электронного строения атома, его радиуса и силы притяжения электрона к ядру.

Энергия ионизации (Еи, I) - минимальная энергия, необходимая для отрыва наибольшее слабо связанного электрона от невозбужденного атома

для процесса

Эо + Eи → Э+ + ē

Выражается в кДж/моль. Определяется зарядом ядра, радиусом атома и конфигурацией внешних электронных оболочек.

По периоду слева направо с ростом заряда ядра и уменьшением атомного радиуса Eи увеличивается. В А-группах сверху вниз с увеличением атомного радиуса Eи уменьшается. Энергия ионизации (Eи) характеризует проявление металличности у атомов элементов. Чем меньше Eи, тем более выражена способность атома отдавать электроны, его восстановительные и металлические свойства.

По периоду слева направо металлические и восстановительные свойства атомов уменьшаются, по группе сверху вниз растут.


Количественной характеристикой способности атомов присоединять электроны является энергия сродства к электрону Еср, F).


Энергия сродства к электрону - это энергия, которая выделяется при присоединении электрона к нейтральному атому

Эо + ē → Э- + Еср

Чем больше Еср, тем легче атом присоединяет электроны и тем сильнее проявляются его окислительные и неметаллические свойства элементов.

Выражается обычно в кДж/моль.

В периодах слева направо с возрастанием заряда ядра и уменьшением радиуса атома Еср увеличивается, в группе сверху вниз с увеличением радиуса атома Еср уменьшается.

Так Еср большинства металлов невелика или даже отрицательна, поэтому они не образуют устойчивых анионов.

Неметаллические и окислительные свойства элементов по периоду слева направо усиливаются, а по группе сверху вниз уменьшаются.


Электроотрицательность:


Атомы присоединяют или отдают электроны в процессе химического взаимодействия. Комплексной характеристикой атома, учитывающей его способность и к присоединению, и к отдаче электронов, является электроотрицательность - ЭО (χ).

ЭО элемента - условная величина, характеризующая способность его атомов в химических соединениях притягивать к себе электроны от атомов-партнеров (тех, с которыми непосредственно связан данный атом).

Величина ЭО зависит от Еи и Еср и упрощено может быть определена

χ = 1/2 (Еи + Еср)

Для практической оценки этой способности атомов используют условную шкалу, относительных электроотрицательностей. Согласно ей самый ЭО элемент F, а наименее ЭО - Fr.

Очевидно, что в периоде слева направо с уменьшением радиуса атома и увеличением Еи и Еср увеличивается ОЭО происходит ослабление восстановительных и усиление окислительных свойств, а в группе сверху вниз с увеличением радиус атома и уменьшением Еи и Еср ОЭО уменьшается, происходит ослабление окислительных и усиление восстановительных свойств атомов химических элементов.

По величине ОЭО можно отнести элемент к металлам или неметаллам.

Как правило, неметаллы имеют значения ОЭО больше 2 (по другим источникам больше 1,7). Они располагаются в А-группах правой верней части ПС над условной диагональю В - Аt. У металлов значение ОЭО < 2 (<1,7). Наиболее активные металлы находятся в нижнем левом углу ПС в А-группах. Несколько элементов (В, Si, Ge, As, Te) со значение ОЭО близким к 2, проявляют промежуточные свойства, их иногда называют полуметаллы.

ПЕРИОДИЧЕСКИЕ СВОЙСТВА СЛОЖНЫХ ВЕЩЕСТВ

Характеристики атомов элементов - Еи, Еср, χ - непосредственно связаны с типами химических реакций, в которые способны вступать атомы этих элементов, а также с типами и свойствами веществ, ими образуемых.

С изменением электронной конфигурации атомов элементов по периоду от ns1 до ns2np6 изменяется высшая степень окисления атомов элементов (от +1 до +7 (+8)), что приводит к изменению состава и свойств высших оксидов и гидроксидов. Это изменение также носит периодический характер.

По периоду слева направо с уменьшением металлических свойств атомов элементов и образуемых ими простых веществ происходит уменьшение основных свойствоксидов, и гидроксидов и соответственно их кислотные свойства увеличиваются.

По группе сверху вниз с уменьшением неметаллических и усилением металлических свойств атомов элементов происходит уменьшение кислотных и увеличение основных свойств оксидов и гидроксидов.

Этот переход обычно осуществляется через так называемые амфотерные гидроксиды, способные диссоциировать и как кислота, и как основание.

Низшая степень окисления металлов равна 0, а неметаллов - (№ группы - 8), т.е. определяется числом электронов, недостающих до завершения внешнего энергетического уровня. Значит, при изменении электронной конфигурации атома неметалла от ns2np2 до ns2np5 низшая степень окисления изменяется от - 4 до -1. Такое изменение также периодично. Это приводит к периодическому изменению состава и свойств летучих водородных соединений неметаллов (RH4, RH3, H2R, RH).

Кислотно-основный характер их водных растворов изменяется следующим образом: по периоду слева направо кислотные свойства усиливаются вследствие увеличения ОЭО неметалла, что приводит к увеличению полярности связи R - Н; по группе сверху вниз кислотные свойства также усиливаются в следствие увеличения радиусов атомов, что приводит к увеличению длины связи R - H и ее ослаблению.

Металлы не образуют летучих водородных соединений, их гидриды солеобразны (NaH, CaH2) или металлоподобны.

Изменение свойств химических элементов и их соединений можно проиллюстрировать на примере 2 и 3 периодов:

высшая с.о.

+ 1 + 2 + 3 + 4 + 5 + 6 + 7 -

высший оксид и характер свойств

Li2O

основный

Na2O основный

BeO

амфотерный

MgO основный

B2O3

кислотный

Al2O3 амфотерный

CO2

кислотный

SiO2

кислотны й

N2O5

кислотный

P2O5 кислотный

-


SO3 кислотный

-


Cl2O7 кислотный


-

Высший гидроксид и характер свойств

LiOH щелочь

NaOH щелочь

Be(OH)2

амфотер-ный гидроксид

Mg(OH)2

нераство-римое основание

H3BO3

слабая кислота

Al(OH)3 амфотер-ный гидроксид

H2CO3

слабая кислота

H2SiO3 слабая кислота

HNO3

сильная кислота

H3PO4 слабая кислота

-


H2SO4 сильная кислота

-


HClO4 сильная кислота

-

низшая с.о.

0 0 0 -4 -3 -2 -1 -

летуч. Водородные соединения и характер свойств


-


-


-


СH4

-

SiH4

-


NH3

слабое основание

PH3

очень слабое основание


H2O

амфотер

H2S

слабая кислота


HF

слабая кислота

HCl сильная кислота


-

Такой характер изменения свойств в основном повторяется во всех периодах (кроме первого), поэтому такое изменение свойств называют периодическим.


Кислотный характер оксидов и гидроксидов, образованных атомами одного элемента, с увеличением его степени окисления увеличивается.

Например: Mn2+O, , Mn+4O2, Mn+6O3, .


основные амфотерный кислотные

оксиды оксид оксиды

Mn+2(OH)2, Mn+3(OH)3, Mn+4(OH)4, H2Mn+6O4, HMn+7O4.

основания амфотерный кислоты

слабые гидроксид сильные


кислотные свойства усиливаются


Для сравнения: слабые кислоты сильные кислоты

сернистая Н2S+4O3 серная H2S+6O4

азотистая HN+3O2 азотная HN+5O3


Такова же и закономерность изменения окислительной способности атома.

Например: Mno → Mn+2 → Mn+3 → Mn+4 → Mn+6 → Mn+7

только окислительно-восстановительная только

восстановитель двойственность окислитель


окислительные свойства возрастают


ВТОРИЧНАЯ ПЕРИОДИЧНОСТЬ

Изменение многих характеристик атомов зачастую не монотонно. Так, для элементов 2 периода слева направо энергия ионизации Еи в целом растет, однако, возрастая от лития к бериллию, она уменьшается к бору, а далее растет к углероду и азоту, снова уменьшаясь к кислороду, а далее увеличивается ко фтору, достигая максимума у неона.

При переходе к 3 периоду с ростом радиуса атома Еи резко уменьшается, а при движении по периоду слева направо от натрия до аргона растет аналогично 2 периоду – немонотонно:

Li B Be C O N F Ne

Na Al Mg Si S P Cl Ar

Такое явление получило название вторичная периодичность.