Реферат: Расчет насосной установки - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Расчет насосной установки

Рефераты по промышленности и производству » Расчет насосной установки

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

профессионального образования

«Ярославский государственный технический университет»

Кафедра « Процессы и аппараты химической технологии»


Расчетное задание

по дисциплине «Процессы и аппараты химической технологии»

РАСЧЕТ НАСОСНОЙ УСТАНОВКИ


Задание выполнила

студентка С.С. Ковальчук

Преподаватель

канд. техн. наук, доцент

А.В. Сугак


2010

Введение


Насосные установки широко применяются во всех отраслях народного хозяйства: в промышленности, в строительстве, на транспорте, в сельском хозяйстве. Это предусматривает знание теоретических основ гидравлики и умение выполнять практические гидравлические расчеты для широкого курса специалистов.

Задание охватывает «Расчет насосной установки» охватывает комплекс наиболее важных прикладных расчетов в области гидравлики и рекомендуется для выполнения студентами, изучающими курс «Процессы и аппараты химической технологии».

Приступая к выполнению задания, следует внимательно изучить его содержание, ознакомиться с научно – технической и учебной литературой.

При выполнении расчетного задания необходимо руководиться следующей методикой:

Изобразить схему насосной установки в соответствии с принятым вариантом;

выполнить расчет трубопровода, построить расчетную характеристику сети в координатах: потребный напор Н, расход жидкости V;

Осуществить подбор насоса и нанести характеристики насоса на график с изображением характеристики сети;

Рассчитать мощность на валу насоса, номинальную мощность электродвигателя насосной установки [1].


1. Расчетное задание


Начальные данные :

жидкость вода;

температура t – 40 Со;

расход Vж – 10 л/с – 0,01 м3/с;

геометрический напор Нг – 25 м;

давление в резервуарах – Р1= 0,1 МПа, Р2= 0,15 МПа;

общая длина трубопровода L – 150 м.

Местные сопротивления на трубопроводе ξ:

На всасывающей линии:

заборное устройство (обратный клапан с защитной сеткой) 1 шт.=4,3;

плавный поворот (отвод) 2 шт.=0,14*2=0,28;

На напорной линии:

задвижка (или вентиль) 1 шт. = 0,5;

плавный поворот (отвод) 2 шт. = 0,14*2 = 0,28;

выход из трубы (в аппарат Б) 1 шт. = 1.

Число оборотов рабочего колеса n = 3000 об/мин.


Рисунок 1. Схема насосной установки.

2. Гидравлический расчет трубопровода


2.1 Выбор диаметра трубы


Диаметр трубы рассчитывают по формуле


(1)


гдеd – диаметр трубы (расчетный), м;

V – заданный расход жидкости, м3 / с;

W – средняя скорость жидкости, м/с.

Расчет по (1) выполняют отдельно для всасывающей линии и напорной, при этом W принимают для всасывающей линии 0,8 м/с, для напорной 1,5 м/с.

Расчет



Действительный диаметр трубы равен


d1=159 x 5.0 мм

d2=108 x 5.0 мм


По принятому действительному диаметру трубы уточняют среднюю скорость жидкости

(2)


2.2 Определение высоты установки насоса (высота всасывания)


Допустимую высоту всасывания рассчитывают по формуле


(3)


где- допустимая высота всасывания, м;

Р1 – заданное давление в расходном резервуаре, Па;

Рн.п. – давление насыщенных паров жидкости при заданной температуре, Па;

Ƿ - плотность жидкости, кг/м3;

- потери напора во всасывающей линии, м;

- допустимый кавитационный запас, м.


Определение допустимого кавитационного запаса

Критический запас


(4)


где V – производительность насоса (заданный расход жидкости), м3/с;

n – частота вращения рабочего колеса насоса, об/мин.


Допустимый кавитационный запас увеличивают по сравнению с критическим на 20…30 %



Расчет потерь напора во всасывающей линии

Расчет выполняется по принципу сложения потерь напора


(5)


гдеλ – коэффициент трения;

l1 – длина всасывания линии, м;

d1 – диаметр всасывающей трубы, м;

ξобр.кл. ξп.п. – коэффициенты местных сопротивлений;

w1 – скорость жидкости во всасывающей линии, м/с.

Коэффициент трения зависит от критерия Рейнольдса Re и относительной шероховатостью


λ = f(Re,E) (6)


Критерий Ренольдса вычисляют по формуле


(7)


гдеρ – плотность жидкости, кг/м3;

μ – коэффициенты динамической вязкости, Па.с.



Относительная шероховатость (гладкость) вычисляют по формуле


(8)


где е – величина эквивалентной шероховатости.



При расчете критерия Ренольдса мы показали что режим турбулентный, а значит коэффициент трения выбирается по графику Г.А. Мурина

λ=0,0215

Рассчитываем потери напора по формуле (5)



Далее рассчитываем допустимую высоту всасывания по формуле (3)

насос трубопровод мощность электродвигатель

Величина l1 по заданию связана с определенной величиной hвс.. Поэтому расчет выполняют методом последовательных приближений. Для этого необходимо:

- задаться величиной l1с м;

- определить hп.вс.;

- вычислить hвс ;

- проверить условие l1=hdc+3 м


9=6.214+3 м

9=9.2 м


Отклонение меньше чем 10% поэтому расчет верный.


2.3. Построение кривой потребного напора (характеристики сети)


Потребный напор Нпотр – напор в начале трубопровода, обеспечивающий заданный расход жидкости. Зависимость потребного напора от расхода Нпотр=f(V) называется кривой потребного напора, или характеристикой сети. Потребный напор вычисляют по формуле


(9)


гдеНг – геометрическая высота подъема жидкости, м;

Р1, Р2 – давление в резервуарах соответственно напорном и расходном, Па;

- сумма коэффициентов местных сопротивлений на всем трубопроводе.

Сумма местных сопротивлений


где ξоб.кл – заборное устройство (обратный клапан с защитной сеткой) ;

ξп.п – плавный поворот (отвод);

ξзд – задвижка (или вентиль);

ξвых – выход из трубы (в аппарат Б).



Первые два слагаемых в (1.9.) не зависят от расхода. Их сумма называется статическим напором Нст


(10)


В случае турбулентного режима, допуская квадратичный закон сопротивления (λ=const), можно считать постоянной величиной следующие выражение:


(11)

м


С учетом предыдущих формул, выражение для потребного напора можно представить как



Для построения кривой потребного напора необходимо задаться несколькими значениями расхода жидкости, причем как меньше заданного расхода, так и большего его, а так же равным заданному.


Таблица 1 Характеристика сети


V1 V2 V3 V4 V5 V6
V2 0 0.005 0.01 0.015 0.02 0.025
Нпотр 30 30.87 33.498 37.87 43.99 51.86

3. Подбор насоса


Исходными параметрами для подбора насоса являются его производительность, соответствующая заданному расходу жидкости и потребный напор Нпотр . Вычисляют удельную частоту вращения по формуле:


,


где n – частота вращения рабочего колеса насоса, об/мин



По удельной частоте вращения nу определяют тип насоса

13…25 – центробежный тихоходный

Пользуясь сводным графиком [3] подачи и напоров для данного типа насоса, определяем марку насоса. Для этого на график наносят точку с координатами Vзад, Нпотр .

Для расхода V=0,01м3/с и напора Нпотр=33,49, марка насоса 3К9 n=2900 об/мин.

После выбора марки насоса главную характеристику необходимо перенести на график с характеристической сети. На поле того же графика переносят кривую КПД ή = f(V).По полученным параметрам вычисляют мощность на валу насоса [кВт]


кВт,


гдеNв – мощность на валу, кВт;

ρ – плотность жидкости, кг/м3;

V – производительность насоса (заданный расход жидкости) м3/с;

Н – напор насоса, м;

ή - КПД насоса.


кВт


Полагая, что для лопастных насосов промежуточная передача между двигателями и насосом отсутствует, а КПД соединительной муфты можно принять равным 0,96, определяют номинальную мощность двигателя


кВт

кВт


где ήдв – КПД.

Для предварительной оценки Nдв можно приближенно принять Ƞдв=0,8.

С учетом возможности пусковых перегрузок при включении насоса в работу установочную мощность двигателя принимают больше номинальной


кВт,


где - коэффициент запаса мощности.


кВт


Вывод


В результате расчета был вычислен диаметр трубопровода на всасывающей линии d1 = 159 x 5.0 мм и на напорной линии d2 = 108 x 5.0 мм;

была построена характеристическая сеть;

вычислили удельную частоту вращения;

выбрали тип насоса по удельной частоте;

выбрали марку насоса 3К9, число оборотов рабочего n = 2900 об/мин.


Список использованных источников


Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов. – Л.: Химия, 1981. – 560 с.

Касаткин А.Г. Основные процессы и аппараты химической технологии. – Москва 2005. – 750 с.

Туркин В.В. Расчет насосной установки. – Ярослав. политехн. ин-т. Ярославль, 1991. – 19 с.