Реферат: Атомная энергетика Катастрофы Чернобыль - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Атомная энергетика Катастрофы Чернобыль

Рефераты по физике » Атомная энергетика Катастрофы Чернобыль
Чернобыльская атомная
электростанция находится на самом севере Украины в Киевской области около впадения реки Припять в Днепр. В 112 километрах южнее г.Киева, в 100 км восточнее г.Чернигова. Непосредственно место, где находится станция и городок обслуживающего персонала называется город Припять. Он на карте обозначен красной точкой. Коричневый круг - это 30- ти
километровая зона, в которой
запрещено проживание и длительное
нахождение. В период 1987-88 годов почти все населенные пункты в этой зоне были ликвидированы,
дабы исключить
проживание в этой зоне людей.
К весне 1986 года на Чернобыльской
Атомная электростанция мало чем отличается от тепловой
электростанции. Вся разница в том, что в тепловой электростанции пар для турбин, приводящих во вращение электрогенераторы получается за счет нагрева воды от сжигания угля, мазута, газа в топках паровых котлов, а на атомной электростанции пар получается в ядерном реакторе все из той же воды.
При распаде атомного ядра тяжелых элементов из него вылетает
несколько нейтронов. Поглощение такого свободного нейтрона другим атомным ядром, вызывает возбуждение и распад этого ядра. При этом из него высвобождается также несколько нейтронов, которые в свою очередь... Начинается так называемая цепная ядерная реакция, сопровождаемая выделением тепловой энергии.
Ядерное топливо представляет собой
таблетки черного цвета диаметром около 1 см. и высотой около 1.5 см. В них содержится 2 % двуокиси урана 235, и 98 % урана 238, 236, 239. Во всех случаях при любом количестве ядерного топлива ядерный взрыв развиться не может, т.к.для лавинообразной стремительной реакции
деления, характерной для
ядерного взрыва требуется концентрация урана 235 более 60%.
Двести таблеток ядерного топлива
Реактор марки РБМК-1000 (реактор большой
мощности канальный электрической мощностью 1000
мегаватт) представляет собой цилиндр
диаметром 11.8 м. и высотой 7 метров, сложенный из графитовых блоков (размер каждого блока (25х25х60см.). Через
каждый блок проходит
сквозное отверстие- канал. Всего имеется 1872 таких отверстий - каналов в этом цилиндре. 1661 каналов предназначены для кассет с ядерным топливом, а 211 для управляющих стержней содержащих
поглотитель нейтронов (кадмий или
бор). Цилиндр реактора окружен стенкой
толщиной в 1 метр из таких же графитовых блоков, но не имеющих отверстий. Все это окружено стальным баком, заполненным водой. Вся эта конструкция лежит на металлической плите и накрыта сверху другой плитой (крышкой). Общий вес реактора 1850 тонн. Общая масса ядерного топлива в реакторе 190 тонн.
Вода под давлением 70 атмосфер
главными циркуляционными насосами (3) ГЦН подается
по трубопроводам (2) в
нижнюю часть реактора(1), откуда по каналам продавливается в верхнюю часть реактора, омывая сборки с ТВЭЛами.
В
ТВЭлах под воздействием нейтронов идет цепная ядерная реакция с выделением большого
количества тепла. Вода
нагревается до температуры 248 градусов и вскипает. Смесь, состоящая из 14% пара и 86% воды поступает по трубопроводам (3) в барабаны сепараторы (2), где происходит отделение
пара от воды. Пар по
трубопроводу (4) подается в турбину.
Из турбины по трубопроводу(5)
пар, уже превратившийся в воду с
температурой 165 градусов возвращается в барабан-сепаратор,
где смешивается с
горячей водой, поступившей из реактора, и охлаждает ее до 270 градусов. Эта вода по трубопроводу (1) вновь поступает в насосы. Цикл замкнулся. По трубопроводу(6) извне в
сепаратор может поступать
Главных циркуляционных насосов всего восемь. Шесть из них в работе, а два
Предпосылки к катастрофе
Реактор не только источник электроэнергии, но и ее потребитель. Пока из активной зоны реактора
не будет выгружено ядерное топливо, через нее необходимо непрерывно прокачивать воду для того, чтобы не перегрелись ТВЭЛы. Обычно часть электрической мощности турбин отбирается на собственные нужды реактора. Если реактор остановлен (замена топлива, профилактические работы, аварийная остановка), то электропитание реактора идет от соседних блоков, внешней электросети.
На крайний аварийный случай предусмотрено питание от резервных дизель-генераторов. Однако в
самом лучшем случае они смогут начать выдавать электроэнергию не раньше, чем через одну-три минуты. Возникает вопрос: чем питать насосы, пока дизель-генераторы не выйдут на режим? Необходимо было выяснить - сколько времени с момента отключения подачи пара на турбины, они, вращаясь по инерции, будут вырабатывать ток, достаточный для аварийного питания основных систем реактора. Первые испытания показали, что турбины не могут обеспечить электроэнергией основные системы в режиме вращения по инерции (режим выбега).
Специалисты "Донтехэнерго" предложили свою систему управления магнитным полем турбины, что
обещало решить проблему энергопитания реактора при аварийном отключении подачи пара на турбину. 25 апреля предполагалось опробовать эту систему в работе, т.к. 4-й энергоблок в этот день все равно планировалось остановить для ремонтных работ.
Однако требовалось во-первых, что-то использовать в качестве балластной нагрузки для того,
чтобы можно было производить замеры на выбегающей турбине. Во- вторых, было известно, что при падении тепловой мощности реактора до 700-1000 мегаватт сработает система аварийной остановки реактора (САОР), реактор будет остановлен и невозможно будет повторить эксперимент несколько раз, т.к. произойдет его ксеноновое отравление.
Было решено заблокировать систему САОР, а в качестве балластной нагрузки использовать
резервные ГЦН.
Это были ПЕРВАЯ и ВТОРАЯ трагические ошибки, повлекшие за собой все остальное. Во-первых
Хроника Чернобыльской катастрофы
25 апреля 1986г. 1.00. Начато постепенное снижение мощности реактора. 13.05. Мощность реактора снижена с 3200 мегаватт до 1600. Остановлена турбина №7. Питание электросистем реактора переведено на турбину №8. 14.00. Заблокирована система аварийной остановки реактора САОР. В это время диспетчер "Киевэнерго" распорядился задержать остановку блока (конец недели, вторая половина дня, растет потребление энергии). Реактор работает на половинной мощности, а САОР так и не подключена вновь.
Это грубая ошибка
персонала , но на развитие событий она не повлияла.
23.10. Диспетчер снимает запрет. Персонал начинает снижать мощность реактора.
26 апреля 1986г. 0.28. Мощность реактора снизилась до уровня, когда систе му управления движением
управляющих стержней надо переводить с локальной на общую (в обычном режиме группы стержней можно
перемещать независимо друг от друга - так удобнее, а при низкой мощности все стержни должны управляться с одного места и двигаться одновременно). Этого сделано не было. Это была
ТРЕТЬЯ трагическая ошибка.
Одновременно оператор допускает ЧЕТВЕРТУЮ трагическую ошибку. Он не выдает машине команду
"держать мощность". В результате мощность реактора стремительно снижается до 30 мегаватт. Кипение в каналах резко снизилось, началось ксеноновое отравление реактора. Персонал смены допускает
ПЯТУЮ
ШЕСТУЮ
трагическую ошибку. Он блокирует системы остановки реактора по сигналам недостаточного уровня воды и давлению пара. 1.19.30 Уровень воды в барабанах сепараторах начал расти, но из-за снижения температуры воды, поступающей в активную зону
реактора и ее большого количества, кипение там
прекратилось. Последние стержни автоматического регулирова ния покинули активную зону.
Оператор допускает СЕДЬМУЮ трагическую ошибку. Он полностью выводит из активной
стабилизировался, количество поступающей в реактор
воды удалось привести в норму. Тепловая мощность реактора медленно начала расти. Персонал предположил, что работу реактора удалось стабилизировать и было решено продолжить эксперимент. Это была
ВОСЬМАЯ трагическая ошибка. Ведь практически все
стержни управления находились в поднятом положении, запас реактивности был недопустимо мал, САОР отключена, системы автоматической
остановки реактора по ненормальному
давлению пара и уровню воды заблокированы. 1.23.04 Персонал блокирует систему аварийной остановки реактора, срабатывающую в случае прекращения подачи пара на вторую турбину, если до этого уже была выключена первая. Напомню, что турбина № 7 была выключена еще в 13.05 25.04 и сейчас работала только турбина №8. Это была
ДЕВЯТАЯ трагическая ошибка. Инструкция запрещает отключать эту
систему аварийной остановки реактора во всех случаях. Одновременно персонал перекрывает подачу пара на турбину №8. Это идет эксперимент по замеру электрических характеристик работы турбины в режиме выбега. Турбина начинает терять обороты, напряжение в сети снижается и ГЦН, питающиеся от этой турбины начинают снижать обороты.
Последняя ДЕСЯТАЯ трагическая ошибка персонала и последняя
А произошло вот что - на расстоянии 1.5 метра под каждым стержнем (4) (см.
рисунок конструкции управляющего стержня) подвешен так
называемый "вытеснитель" (5). Это алюминиевый цилиндр длиной
4.5м., заполненный графитом. Его задача состоит в том, чтобы при опускании управляющего стержня нарастание поглощения нейтронов происходило не резко,
а более плавно. Графит тоже поглощает
нейтроны, но несколько слабее. чем бор или кадмий. Когда стержни управляющие
подняты до предела вверх, то нижние концы
вытеснителей находятся выше нижней границы активной зоны на 1.25м. В этом пространстве находится вода, которая еще не кипит. Когда все стержни резко пошли вниз по сигналу АЗ-5, то сами стержни с бором и кадмием еще фактически не вошли в активную зону, а цилиндры вытеснителей,
действуя подобно поршням, вытеснили из активной
зоны эту воду. ТВЭЛы обнажились. Произошел резкий скачок парообразования. Давление пара в реакторе резко возросло и это давление не позволило стержням упасть вниз. Они зависли, пойдя всего 2 метра. Оператор выключает питание муфт стержней. При нажатии на эту
кнопку отключаются электромагниты, которые держат
управляющие стержни прикрепленными к арматуре. После подачи такого сигнала абсолютно все стержни (и ручного и автоматического управления) отсоединяются от своей арматуры и свободно падают вниз под действием собственного веса. Но они уже висели, подпираемые паром, и не шевелились.
Это был момент первого взрыва.
Реактор перестал существовать как управляемая система. После разрушения каналов и паропроводов давление в реакторе стало падать и вода вновь пошла в активную зону реактора. Начались химические реакции воды с ядерным топливом, разогретым графитом, цирконием. В ходе этих реакций началось бурное образование водорода и окиси углерода. Давление газов в реакторе стремительно нарастало. Крышка реактора весом около 1000 тонн приподнялась, обрывая все трубопроводы. 1.23.46 Газы, находившиеся в реакторе соединились с кислородом воздуха, образовав гремучий газ, который из-за наличия высокой температуры мгновенно взорвался.
Это был второй взрыв.
Крышка реактора подлетела вверх, повернулась на 90 градусов и вновь упала вниз. Разрушились стены и перекрытие реакторного зала. Из реактора вылетели
четверть
находящегося там графита, обломки раскаленных ТВЭЛов. Эти обломки упали на крышу машинного зала и другие места, образовав около 30 очагов пожара.