Реферат: Дисперсные системы Оптические свойства и методы исследования дисперсных систем - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Дисперсные системы Оптические свойства и методы исследования дисперсных систем

Рефераты по химии » Дисперсные системы Оптические свойства и методы исследования дисперсных систем

Дисперсной называют систему, в которой одно вещество распределено в среде другого, причем между частицами и дисперсионной средой есть граница раздела фаз. Дисперсные системы состоят из дисперсной фазы и дисперсионной среды.

Дисперсная фаза - это частицы, распределенные в среде. Ее признаки: дисперсность и прерывистость (рис. 1.1.1.1).

Дисперсионная среда - материальная среда, в которой находится дисперсная фаза. Ее признак - непрерывность.

Поверхность раздела фаз характеризуется раздробленностью и гетерогенностью. Раздробленность характеризуется:

1) степенью дисперсности: , [см-1; м-1], где S - суммарная межфазная поверхность или поверхность всех частиц дисперсной фазы; V - объем частиц дисперсной фазы.

2) дисперсностью - величиной, обратной минимальному размеру:

[; ];

3)удельной поверхностью: , [м2/кг; см2/г]; где m - масса частиц дисперсной фазы.

4) кривизной поверхности: . Для частицы неправильной формы ,

где r1 и r2 - радиусы окружностей при прохождении через поверхность и нормаль к ней в данной точке двух перпендикулярных плоскостей.

Оптические свойства и методы исследования дисперсных систем


Оптические свойства дисперсных систем обусловлены взаимодействием электромагнитного излучения, обладающего определенной энергией, с частицами дисперсной фазы. Особенности оптических свойств дисперсных систем определяются природой частиц, их размерами, соотношением между длиной волны электромагнитного излучения и размерами частиц. Одним из характерных оптических свойств является рассеяние света.

В зависимости от свойств частиц дисперсной фазы и их размеров свет, проходя через дисперсную систему, может поглощаться, отражаться или рассеиваться.

Дисперсные системы способны к рассеянию света. В результате рассеяния проходящий через коллоидный раствор луч света становится видимым (эффект Тиндаля – рис. 1.3.1.1.). Этот вид рассеяния называется опалесценцией (в молекулярных и ионных растворах этот эффект не наблюдается).



Способностью к светорассеянию обладают не только частицы, но и ассоциаты молекул, макромолекулы, включения, нарушающие однородность среды. Рассеяние заключается в преобразовании веществом света, которое сопровождается изменением направления света. Схематически процесс рассеяния света выглядит так:

Р и с. 1.3.1.1. Иллюстрация эффекта Тиндаля


Световая волна вызывает поляризацию молекул, не проводящих и не поглощающих свет частиц, возникающий при этом дипольный момент определяется по уравнению:  = Е, где  - поляризуемость; Е – напряженность возбужденного электрического поля, образованного падающим светом.

Возникающие диполи колеблются с частотой падающего света и создают вторичное излучение во всех направлениях. В однородной среде свет, излучаемый всеми диполями вследствие интерференции, распространяется прямолинейно. В неоднородной среде, к которым относятся высокодисперсные системы с различным показателем преломления фазы и среды, интерференция отсутствует, и испускается некомпенсированное излучение в виде рассеянного света. Если энергия поглощенного кванта света (h) равна энергии испускаемого кванта (h1), то рассеяние будет рэлеевским (упругим). Оно реализуется, когда размеры частиц дисперсной фазы намного меньше длины волны света :

а < 0,1.

Длина волны видимого света колеблется в пределах 380 – 760 нм  условие справедливо для высокодисперсной фазы.

В результате рассеяния интенсивность падающего света I0 изменяется и будет характеризоваться величиной Iр, которая определяется по уравнению Рэлея:

,

где vч – численная концентрация дисперсной фазы;

V – объем частиц (для шарообразной частицы равный 4r3/3);

r – радиус частицы;

 - длина волны падающего света;

n1, n2 – показатели преломления дисперсной фазы и дисперсионной среды.

Рэлеевское светорассеяние характерно для неэлектропроводных, оптически однородных и прозрачных частиц («белые золи»). В соответствии с уравнением Рэлея, интенсивность рассеянного света при прочих равных условиях зависит от размеров частиц и их численной концентрации:

,

где k1 – коэффициент пропорциональности, означает, что другие члены уравнения неизменны.

При умножении числителя и знаменателя уравнения на  (плотность материала частиц дисперсной фазы) произведение vчVр соответствует массе дисперсной фазы в единице объема, т.е. массовой концентрации vм  интенсивность рассеянного света пропорциональна при постоянной массовой концентрации размеру частиц дисперсной фазы в третьей степени. Из уравнения Рэлея: .

Интенсивность рассеянного света зависит от показателей преломления фазы (n1) и среды (n2): .

Если n1 = n2, рассеяния не происходит, в однородных средах светорассеяния не наблюдается.

Свет рассеивается во всех направлениях (свет – векторная величина). Но его интенсивность неодинакова по направлениям, и может быть представлена в виде векторной диаграммы Ми (рис. 1.3.1.2)



Рассеянный свет обычно поляризован. Причина поляризации – поперечная анизотропия (неоднородность) световых лучей. На рис. 1.3.1.2 – рассеянный свет не поляризован в направлении падающего луча и полностью поляризован в плоскости, перпендикулярной падающему световому лучу. В это направлении образуется седловина. Максимальная интенсивность поляризованного света достигается на краях седловины, прямые 4, когда угол между падающим и рассеянным светом   550. Если падающий свет не поляризован, то интенсивность рассеянного света (отношение Jp/J0 пропорционально величине 1+ cos2. При  = 0 рассеяние максимально, при  = 900 оно отсутствует (Ip/2).

При значительной концентрации частиц, когда расстояние между частицами меньше длины волны падающего света, уравнение Рэлея теряет смысл.

Различие опалесценции и флуоресценции: оба явления связаны со свечением растворов. При опалесценции свечение вызвано рассеянием света коллоидным раствором. Флуоресценция характерна только для истинных растворов и связана с поглощением света одной длины волны и излучением света другой длины волны; в результате чего в отраженном свете раствор приобретает окраску. При опалесценции в отличие от флуоресценции рассеянный свет частично поляризован.


Молекулярно-кинетические свойства дисперсных систем


Все молекулярно-кинетические свойства вызваны хаотическим тепловым движением молекул дисперсионной среды, которое складывается из поступательного, вращательного и колебательного движения молекул.

Молекулы жидкой и газообразной дисперсионной среды находятся в постоянном движении и сталкиваются между собой. Среднее расстояние, проходимое молекулой до столкновения с соседней, называют средней длиной свободного пробега. Молекулы обладают различной кинетической энергией. При данной температуре среднее значение кинетической энергии молекул остается постоянным, составляя для одной молекулы и одного моля:

; ,

где m – масса одной молекулы;

M – масса одного моля;

v – скорость движения молекул;

k – константа Больцмана;

R – универсальная газовая постоянная.

Флуктуация значений кинетической энергии молекул дисперсионной среды (т.е. отклонение от среднего) и является причиной молекулярно-кинетических свойств.

Изучение молекулярно-кинетических свойств возможно в результате применения статистических методов исследования, действительных для систем, состоящих из множества элементов (молекул). Исходя из допущения о беспорядочности движения отдельных молекул, теория определяет наиболее вероятное сочетание для систем из множества объектов. Молекулярно-кинетические свойства проявляются в жидкой и газообразной среде, молекулы которых обладают определенно подвижностью.

Броуновское движение

Броуновским называют непрерывное, хаотическое, равновероятное для всех направлений движение мелких частиц, взвешенных в жидкостях или газах, за счет воздействия молекул дисперсионной среды.

Мельчайшие частицы незначительной массы испытывают неодинаковые удары со стороны молекул дисперсионной среды, возникает сила, движущая частицу, направление и импульс силы, непрерывно меняются, поэтому частица совершает хаотические движения.




Определили эти изменения и связали их с молекулярно-кинетическими свойствами среды в 1907 году А. Эйнштейн и М. Смолуховский. В основе расчета – не истинный путь частицы дисперсной фазы, а сдвиг частиц. Если путь частицы определяется ломаной линией, то сдвиг х характеризует изменение координат частицы за определенный отрезок времени. Средний сдвиг определяет среднеквадратичное смещение частицы:

,

где х1, х2, хi – сдвиг частиц за определенное время.

Теория броуновского движения исходит из представления о взаимодействии случайной силы f(), характеризующей удары молекул, силы F, зависящей от времени, и силы трения при движении частиц дисперсной фазы в дисперсионной среде со скоростью v. Уравнение броуровского движения (уравнение Ланжевена) имеет вид: , где m – масса частицы;  - коэффициент вязкости дисперсионной среды. Для больших промежутков времени (>>m/) инерцией частиц (m(dv/d) можно пренебречь. После интегрирования уравнения при условии, что среднее произведение импульсов случайной силы равно нулю, среднее значение флуктуации (средний сдвиг) равно: , где  - время; r – радиус частиц дисперсной фазы; NA – число Авогадро частиц.

В этой формуле характеризует молекулярно-кинетические свойства дисперсионной среды,  - ее вязкость, r – радиус частиц – параметр, относящийся к дисперсной фазе, а время  определяет взаимодействие дисперсионной среды с дисперсной фазой.

Кроме поступательного, возможно вращательное броуновское движение для двухмерных частиц и частиц неправильной формы (нитей, волокон, хлопьев и т.д.).

Броуновское движение наиболее интенсивно проявляется в высокодисперсных системах (размеры частиц 10-9  10-7 м), несмотря на то, что молекулы дисперсионной среды действуют также и на частицы средне- и грубодисперсных систем. Но в связи со значительным размером частиц число ударов молекул резко увеличивается. По законам статистики, импульс действия сил со стороны молекул среды взаимно компенсируется, а значительная масса и инерция крупных частиц оставляет воздействие молекул без последствий.

Тема 1.1.2. Диффузия

Диффузией называют самопроизвольное распространение вещества из области с большей концентрацией в область с меньшей концентрацией. Различают следующие виды диффузии: молекулярную, ионную и коллоидных частиц.



Ионная диффузия связана с самопроизвольным перемещением ионов.

Диффузия высокодисперсных коллоидных частиц показана на рис. 1.1.2.1. В нижней части концентрация частиц больше, чем в верхней, т.е. v1>v2 (где , м3 – численная концентрация частиц, N – число частиц дисперсной фазы, Vд.с. – объем дисперсной системы). Диффузия направлена из области с большей концентрации в область с меньшей концентрацией, т.е. снизу вверх (на рис. показано стрелкой). Диффузия характеризуется определенной скоростью перемещения вещества через поперечное сечение В, которая равна .

На расстоянии х разность концентраций составит v2 – v1, т к. v1>v2, эта величина отрицательна. Изменение концентрации, отнесенное к единице расстояния, называют градиентом концентрации или (в дифф. форме) .

Скорость перемещения вещества пропорциональна градиенту концентрации и площади В, через которую происходит движение диффузионного потока, т.е.

; -

- основное уравнение диффузии в дифференциальной форме.

Скорость диффузии () величина положительная, а градиент концентрации - отрицателен.; поэтому перед правой частью уравнения – знак «минус». Коэффициент пропорциональности D – это коэффициент диффузии. Основное уравнение справедливо для всех видов диффузии , в т.ч. и для коллоидных частиц. В интегральной форме оно применимо для двух процессов – стационарного и нестационарного:

для стационарного процесса: =const. Значительное число диффузионных процессов близко к стационарным. Интегрируя , получим:

;

- -й закон диффузии Фика.

Физический смысл коэффициента диффузии D: если -=1, В = 1 и  = 1, то m = D, т.е. коэффициент диффузии численно равен массе диффундирующего вещества, когда градиент концентрации, площадь сечения диффузионного потока и время равны единице. Равенство только численное, т.к. размерность коэффициента диффузии [м2/с] не соответствует размерности массы.

для нестационарного процесса:  const. Тогда интегрирование основного уравнения с учетом изменения градиента концентрации усложняется. При отсутствии в среде градиентов температуры, давления, электрического потенциала из уравнения определим массу вещества m1, переносимого в результате диффузии в единицу времени через единицу площади поверхности, перпендикулярной направлению переноса (В = 1 и  = 1): , с учетом которого можно определить пространственно-временное распределение концентрации:

- второй закон Фика.

На рис. представлена одномерная диффузия, определяющая движение вещества в одном направлении. Возможна также двух- и трехмерная диффузия вещества (диффузия вещества в двух и трех направлениях), описываемая уравнением: , где I – вектор плотности диффузионного потока; grad v – градиент поля концентрации.

Для трехмерной диффузии, по второму закону Фика, запишем: .

Для двумерной диффузии в правой части уравнения ограничиваемся выражениями для х и y.

Значения коэффициента диффузии для видов её распределяются так: ионная – D = 10-8 м2/с; молекулярная - D = 10-9; коллоидных частиц - D = 10-10. Отсюда видно, что диффузия коллоидных частиц затруднена по сравнению с двумя другими видами. Так, скорость диффузии частиц карамели (дисперсная фаза – коллоидный раствор) в 100 – 1000 раз меньше скорости диффузии молекул сахара (молекулярный раствор). Соответственно в газах D увеличивается до 10-4, в твердых телах снижается до 10-12 м2/с.

Количественно диффузия определяется коэффициентом диффузии, связанным со средним сдвигом соотношением: ; - продолжительность диффузии.

Диффузия высокодисперсных частиц совершается беспорядочно с большей вероятностью в сторону меньшей концентрации. При выводе соотношения приняты следующие допущения: частицы дисперсной фазы движутся независимо друг от друга, между ними отсутствует взаимодействие; средняя энергия поступательных движений частиц равна 0,5 kT.

Используя формулу определения среднего сдвига, коэффициент диффузии можно представить в виде: (k – константа Больцмана, равная ). Если D известен, найдем размер частиц:

;  чем больше размер частиц, тем меньше коэффициент диффузии, менее интенсивна сама диффузия.

Диффузия в полной мере проявляется у высокодисперсных систем (10-9 – 10-7 м), ослаблена у среднедисперсных (10-7 – 10-5 м) и практически отсутствует у грубодисперсных систем (>10-5 м). Коэффициент диффузии зависит и от формы частиц, что не учтено в уравнении . Поэтому формула определяет размер только коллоидных шарообразных частиц (или приведенный к шарообразному размер частиц неправильной формы).


Тема 1.2.3. Осмотическое давление

При разделении двух растворов различной концентрации или раствора и чистого растворителя полупроницаемой перегородкой (мембраной) возникает поток растворителя от меньшей концентрации к большей, выравнивающей концентрацию. Этот процесс называется осмосом.

На схеме (рис. 1.2.3.1) в сосуд с полупроницаемой перегородкой 3, помещен раствор 1. Перегородка пропускает дисперсионную среду (растворитель), но является препятствием для коллоидных частиц (растворенных веществ). Снаружи перегородки – чистый растворитель 2. Концентрация раствора по обе стороны перегородки различна. Внутри сосуда 1 часть раствора занимают молекулы растворенного вещества (частицы дисперсной фазы)  концентрация растворителя там меньше, чем в емкости 2 с чистым растворителем.



За счет диффузии жидкость из области более высокой концентрации перемещается в область меньшей концентрации (из емкости 2 в сосуд 1). С кинетической точки зрения это обусловлено тем, что число ударов молекул о мембрану растворителя со стороны чистого или более разбавленного раствора больше, чем со стороны раствора, что и заставляет перемещаться растворитель через поры мембраны туда, где его меньше (т.е. в область раствора).

С термодинамической точки зрения, химический потенциал 2 чистой жидкости больше 1 растворителя в растворе, процесс самопроизвольно идет в сторону меньшего химического потенциала до их выравнивания: 2 = 1.

В результате перемещения жидкости в емкости 1 создается избыточное давление , называемое осмотическим. Растворитель, проникающий в область раствора 1, поднимает уровень жидкости на высоту Н, что компенсирует давление чистого растворителя в сторону раствора. Наступает момент, когда вес столба жидкости в области раствора уравнивается давлением растворителя.

Осмотическое давление – такое избыточное давление над раствором, которое необходимо для исключения переноса растворителя через мембрану. Осмотическое давление равно тому давлению, которое производила бы дисперсная фаза (растворенное вещество), если бы она в виде газа при той же температуре занимала тот же объем, что и коллоидная система (раствор)

Осмотическое давление  достаточно разбавленных коллоидных растворов может быть найдено по уравнению:

или - уравнение Вант-Гоффа

где mобщ/m – масса растворенного вещества; m – масса одной частицы; V – объем частицы; NA – число Авогадро; Т – абсолютная температура;  - частичная концентрация; k – постоянная Больцмана; М – масса одного моля растворенного вещества; с – массовая концентрация.