Реферат: Автомобильные эксплуатационные материалы - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Автомобильные эксплуатационные материалы

Рефераты по транспорту » Автомобильные эксплуатационные материалы

Министерство образования Республики Беларусь

Учреждение образования «Гомельский дорожно-строительный колледж им. Ленинского комсомола Беларуси»


Контрольная работа


по дисциплине: «Автомобильные эксплуатационные материалы»


Гр.


Выполнил:


Проверил:


Гомель, 2010 г.


Вопрос № 1: Описать карбюрационные свойства топлив.


Бензины, в силу своих физико-химических свойств, применяются в двигателях с принудительным зажиганием (от искры). Более тяжелые дизельные топлива, вследствие лучшей самовоспламеняемости, применяются в двигателях с воспламенением от сжатия, т.е. дизелях.

К автомобильным бензинам предъявляются следующие требования;

бесперебойная подача бензина в систему питания двигателя;

образование топливовоздушной смеси требуемого состава;

нормальное (без детонации) и полное сгорание смеси в двигателях;

обеспечение быстрого и надежного пуска двигателя при различных температурах окружающего воздуха;

отсутствие коррозии и коррозионных износов;

минимальное образование отложений во впускном и выпускном трактах, камере сгорания;

сохранение качества при хранении и транспортировке.

Для выполнения этих требований бензины должны обладать рядом свойств. Наиболее важными нз них являются карбюрационные свойства.

Бензин, подаваемый в систему питания, смешивается с воздухом и образует топливовоздушную смесь. Для полного сгорания необходимо обеспечить однородность смеси с определенным соотношением паров бензина и воздуха.

На протекание процессов смесеобразования влияют следующие физико-химические свойства.

Плотность топлива – Под плотностью, как известно, понима­ют массу вещества, отнесенную к единице его объема. В СИ плотность измеряется в кг/м3, однако, на практике до сих пор при­меняют и другие единицы - г/см3, кг/л. Плотность бензина (как и его вязкость) влияет на расход топлива через калиброванные от­верстия жиклеров карбюратора. Уровень бензина в поплавко­вой камере зависит от плотности. Поэтому величина плотности для автомобильных бензинов при +20 °С должна находиться в пределах 690-780 кг/м3. Применение бензина со значительно по­ниженной плотностью может привести к повышению его уровня в поплавковой камере карбюратора и самопроизвольному выте­канию топлива из распылителя.

Поскольку топлива с одинаковой плотностью, но различного происхождения и химического состава имеют разные свойства, плотность как таковая не характеризует их свойств.

Плотность топлива определяют ареометром, гидростатиче­скими весами и пикнометром. Из-за простоты и быстроты в оп­ределении плотности ареометром этот метод применяют чаще всего, хотя он и менее точный по сравнению с двумя другими.

Зная температуру, при которой была определена плотность, можно привести ее к стандартной температуре (+20 °С):

,

где   - плотность испытуемого продукта при температуре испы­таний, кг/м3;  - температура испытания, °С;  - температурная поправка плотности (определяется по расчетной таблице, изме­няется в пределах 0,515-0,910 кг/м3).

Плотность бензина с понижением температуры на каждый 1 °С возрастает примерно на 1%.

Вязкость (внутреннее трение) - свойство жидкостей, харак­теризующее сопротивление действию внешних сил, вызываю­щих их течение. Вязкость топлива зависит от температуры, хи­мического состава и структуры углеводородов.

С увеличением вязкости затрудняется протекание топлива через жиклеры, что ведет к обеднению смеси. Вязкость в значительной степени зависит от температуры. При изменении температуры от +40 до -40°С расход бензина через жиклер меняется на 20...30 %.

Поверхностное натяжение.На степень распыливания бензи­на влияет, в первую очередь кроме вязкости поверхностное натя­жение: чем меньше их величины, тем меньших размеров получа­ются капли. Величина поверхностного натяжения характеризу­ется работой, необходимой для образования 1 м2 поверхности жидкости (т.е. для перемещения молекул жидкости из ее объема в поверхностный слой площадью в 1 м2) и выражается в Н/м.

Поверхностное натяжение всех автомобильных бензинов одинаково и при +20 °С равно 20-24 мН/м, т.е. примерно в 3,5 раза меньше, чем у воды.

Поскольку плотность, поверхностное натяжение и особенно вязкость автомобильных бензинов оказывают влияние на смесе­образование, это необходимо учитывать при регулировке топливодозирующей аппаратуры.

Испаряемость – эксплуатационное свойство, характеризующее особенности и результат процесса перехода топлива из жидкого состояния в парообразное.

Испаряемость оказывает влияние на процессы образования горючей смеси в двигателе, воспламенение и горение, полноту сгорания, степень разжижения моторного масла, величину естественных потерь топлива при хранении, изменение качества топлива и экологию окружающей среды.

В зависимости от условий различают два вида испарения – статическое и динамическое. Испарение топлива с поверхности, неподвижной относительно окружающей среды, называется статическим. Если жидкость и газовая среда перемещаются относительно друг друга, испарение называется динамическим. При испарении всегда образуются конвективные потоки за счет разности молекулярных масс и температурного градиента в пограничном слое вблизи поверхности испарения.

Наиболее сложным видом является динамическое испарение распыленного топлива в турбулентном потоке нагретого воздуха. На развитие этого процесса влияют химические реакции топлива с кислородом воздуха, термодиффузия, передача тепла излучением и конвекцией. Анатитический расчет процесса испарения затруднен, поэтому его изучают на основе экспериментальных данных. Основной характеристикой процесса испарения является его скорость.

Скорость испарения – количество вещества, которое испаряется и переносится с единицы поверхности жидкости в окружающую среду в единицу времени. Скорость динамического испарения оценивается количеством вещества, которое испаряется в единицу времени в единице объема пространства.

Факторы, влияющие на скорость испарения. На скорость испарения оказывают влияние свойства топлива и условия испарения: размеры, форма и материал камеры, в которой осуществляется испарение; температура жидкости, давление и характер движения среды. При динамическом испарении факела распыленного топлива большое значение оказывают степень и однородность распыливания.

Размеры, форма и материал камеры влияют на температурный режим испарения. От них зависит температура среды, жидкости и время прогрева. С изменением температуры меняются все физические параметры процесса испарения.

Скорость испарения в факеле сильно зависит от степени распыливания топлива, которая влияет на величину поверхности испарения и количество испаряющегося топлива. С уменьшением размеров капли сокращается время ее прогрева и повышается скорость испарения.

Чем меньше однородность распыливания топлива, тем интенсивнее испарение в начатьный период и продолжительнее период испарения.

Давление насыщенных паров и коэффициент диффузии влияют на скорость испарения. Процесс испарения протекает с затратой тепла. Если при испарении тепло не подводится, то температура окружающей среды и жидкости понижается тем сильнее, чем выше теплота испарения жидкости.

Давление насыщенных паров - чем выше давление паров при испарении топлива в замкнутом пространстве, тем интенсивнее процесс их конденсации. Стандартом ограничивается верхний предел давления паров летом - до 670 ГПа и зимой - от 670 до 930 ГПа. Бензины с более высоким давлением склонны к образованию паровых пробок, при их использовании снижается наполнение цилиндров и теряется мощность двигателя, увеличиваются потери от испарения при хранении в баках автомобилей и на складах.


Вопрос № 2: От чего зависит образование отложений в дизельном топливе.

В ряду важнейших показателей дизельных топлив является способность сохранять чистоту топливной аппаратуры и деталей двигателя, что вызвано образованием отложений нагара на форсунках с последующим изменением факела распыла, ухудшением смесеобразования, снижением экономичности двигателя и повышением дымности его выхлопа.

На способность дизельных топлив образовывать отложения влияют количественное содержание смолистых веществ и сернистых соединений, наличие непредельных и ароматических углеводородов, а также плотность и испаряемость.

В эксплуатационных условиях наибольший вред приносит присутствие в дизельном топливе смол. Основную часть смол составляют примеси, остающиеся после очистки нефтяных дистиллятов. Их количество контролируется так же, как и в бензинах – по содержанию фактических смол. В товарных дизельных топливах содержание фактических смол ограничено величиной 30...40 мг на 100 см3 топлива.

С повышением содержания в дизельных топливах непредельных углеводородов их стабильность при хранении снижается, а склонность к нагарообразованию возрастает. Поэтому количество непредельных углеводородов в дизельном топливе контролируется с помощью так называемого йодного числа. Йодное число представляет собой количество йода, реагирующее в определенных условиях с испытуемым топливом. Йодное число пропорционально содержанию непредельных углеводородов, в связи с чем в товарных дизельных топливах его величина не должна превышать 6 г йода на 100 г топлива.

При увеличении содержания в топливе ароматических углеводородов во всех случаях повышается образование нагара. Этому же способствует наличие серы и сернистых соединений.

В настоящее время основную часть дизельных топлив производят из сернистых нефтей. Поэтому основным методом контроля наличия активной серы являются коррозионные испытания на медную пластинку. Кроме того, дополнительно контролируется содержание меркаптановой серы, а также сероводорода. По этой причине, а также из-за ряда других отрицательных последствий содержание серы в дизельных топливах должно быть не более 0,2...0,5 % (в зависимости от вида топлива), меркаптановой серы – не более 0,01 %, а сероводород должен отсутствовать.

При сгорании дизельного топлива содержащиеся в нем сернистые соединения образуют окислы серы SO2 и SО3. При высокой температуре окислы серы корродируют металлы в газовой фазе. При низкой температуре они растворяются в конденсирующейся из продуктов сгорания воде, образуя коррозионно-агрессивные сернистую и серную кислоты.

Из-за комплексного характера склонности дизельных топлив к нагарообразованию для его более полной оценки используются показатели коксуемости и зольности. Коксуемостью называется свойство топлива образовывать отложения при нагреве до 800 – 900 °С без доступа воздуха. Продукты коксования (кокс) состоят в основном из углерода и высокомолекулярных соединений. Они отлагаются в виде твердого нароста главным образом на горячих деталях, не контактирующих непосредственно с зоной горения (внутри форсунок, на юбках поршней в области поршневых колец и др.). Контроль коксуемости осуществляется по содержанию кокса в 10 %-ном остатке топлива после перегонки, количество которого не должно превышать 0,3 % по всем маркам топлив.

После полного сгорания топлива в воздухе образуется минеральный остаток – зола, вызванный присутствием в топливе различных неорганических примесей. Из-за абразивных свойств золы она не только увеличивает нагар, но и ведет к повышенным износам в двигателе. Поэтому допустимое содержание золы в товарных дизельных топливах – зольность – ограничивается 0,01 %.

Как и в случае бензинов, причиной коррозионной агрессивности дизельных топлив является наличие таких соединений, как водорастворимые кислоты и щелочи, органические кислоты и сернистые соединения.

Присутствие водорастворимых кислот и щелочей в дизельных топливах не допускается. Содержание остальных агрессивных соединений в дизельных топливах контролируется, как и в бензинах, по показателю кислотности. Кислотность не должна превышать 5 мг КОН для нейтрализации 100 мг топлива.


Вопрос № 3: Описать противоокислительные свойства масел.

Противоокислительные свойства определяют стабильность масла, от которой зависит срок работы масел в двигателях, характеризуют их способность сохранять первоначальные свойства и противостоять внешнему воздействию при нормальных температурах. Стойкость моторных масел к окислению повышается при введении антиокислительных присадок.

При хранении, транспортировании, в процессе работы в дви­гателях масла подвергаются глубоким химическим изменениям – окислению, полимеризации, разложению и т.п. При этом образу­ются кокс, смолистые, асфальтеновые и другие вещества.

Установлено (в основном исследованиями Н.И. Черножукова и С.Э. Крейна), что для большинства углеводородов первичные продукты окисления – это перекисные соединения: моноалкил – перекиси R-O-O-H, диалкилперекиси R-O-O-R и др.

При высоких температурах среди входящих в состав масла трех групп углеводородов легче всех окисляются алкановые, за­тем циклановые и ароматические.

Срок работы масел в двигателях зависит от их стабильно­сти, под которой понимают способность масел сохранять свои первоначальные свойства и противостоять внешнему воздейст­вию при нормальных температурах. Масла, стойкие к действию кислорода при высокой температуре, обладают высокой термо­окислительной стабильностью.

Стабильность масел, применяемых в двигателях внутренне­го сгорания, зависит от многих факторов. Основные из них – тем­пературные условия, химический состав масел, наличие воды и механических примесей, а также окислительные свойства: дли­тельность и поверхность окисления, действие продуктов окисле­ния. С повышением давления воздуха и усилением диффузии его в масло процесс окисления ускоряется.

Температура оказывает на окисление решающее воздейст­вие. Так, при температуре 18-20 °С все первоначальные свойства масла сохраняются в течение пяти лет. Но уже начиная с 50-60 °С скорость окисления масел с повышением температуры на каждые 10 °С примерно удваивается. Поэтому высокая тепло­вая напряженность деталей форсированных двигателей (рисунок 7.12), с которыми приходится контактировать моторному маслу, и взаимодействие с прорывающимися высоконагретыми газами (на такте сжатия их температура около 150-450 °С для карбюраторных двигателей и около 500-700 °С для дизелей) рез­ко ужесточают условия их работы.

Повышение термической напряженности моторных масел сопряжено с отдельными конструктивными решениями: исполь­зованием наддува, применением герметизированной системы ох­лаждения (увеличивает температуру поршня на 10-20 °С), умень­шением объема системы смазки двигателя, масляным охлажде­нием поршней и др. Возрастание опасности термического и меха­нического разрушения масляной пленки в основных сопряжен­ных парах двигателя в условиях высокой тепловой напряженно­сти и интенсивного контакта его деталей с нагретыми газами связано с интенсификацией процесса окисления масла и нарушением нормальной работы двигателя за счет возможного износа деталей, загрязнения продуктами окислительной полимеризации углеводородов масла и топлива с последующим закоксовыванием поршневых колец, забивкой дренажных отверстий, масляных каналов и т.д. В результате происходит снижение надежности ра­боты двигателя, возрастают затраты на техническое обслужива­ние. Загрязнение масла и топлива продуктами окисления может в ряде случаев способствовать возникновению аварийных ситуа­ций и даже выходу двигателя из строя.

По условиям химического превращения масла в двигателе вы­деляют три зоны – камера сгорания; поршневая группа и картер двигателя, в значительной степени различающиеся по уровню температуры, количеству масла и концентрации кислорода. Отло­жения, образующиеся в двигателе в результате превращения угле­водородов, принято подразделять на нагары, лаки и осадки.

Нагары – твердые углеродистые вещества (продукты глубо­кого окисления углеводородов масла), откладывающиеся на стенках камеры сгорания, клапанах, свечах, днище поршня и на верхнем пояске боковой поверхности поршня. По структуре на­гар может быть монолитным, пластинчатым и рыхлым. Химиче­ский состав его зависит как от качества масла и топлива, так и от режима работы двигателя, запыленности воздуха, наличия и ха­рактера присадок и т.д. Поэтому он крайне непостоянен. В соста­ве нагара карбены и карбоиды – основная часть – составляют 50-70%, асфальтены и оксикислоты – 3-6%, смолы и масла – 15-40%, золы- 1-10%.

Нагар образуется в результате попадания масла под насос­ным воздействием поршневых колец в камеру сгорания. Часть его испаряется и сгорает вместе с топливом. Другая часть, рас­плываясь по днищу и горячим стенкам камеры сгорания, остает­ся на их поверхностях в виде слоя густой смолистой массы. Из двух различаемых фаз нагарообразования – фазы роста и фазы равновесного состояния нагар достигает предельной толщины в первой фазе. Количество нагара напрямую зависит от размера низкотемпературной зоны, прилегающей к поверхности метал­ла: чем эта зона больше, тем больше и нагар. В высокотемпера­турной зоне, как отмечалось выше, масло испаряется и сгорает, а остающиеся углеродистые частицы не могут удержаться на ли­шенной связующей среды поверхности.

Количество образующегося нагара зависит также от качест­ва масла и его расхода, от качества топлива, а предельная его толщина – от теплового режима работы двигателя: чем холоднее стенки камеры сгорания, тем больший нагар на них формирует­ся. Летом нагара образуется меньше, чем зимой.

Отрицательные последствия нагарообразования выражают­ся в следующем:

- ухудшается охлаждение камеры сгорания, уменьшается ее объем (тем самым увеличивается степень сжатия двигателя), по­вышаются требования к детонационной стойкости топлива;

- появляется возможность преждевременного воспламене­ния смеси, когда топливо поджигается до проскакивания искры между контактами свечи (воспламенение возникает от раска­ленных частиц нагара, особенно, если в его состав входят со­единения свинца) – при этом раздается характерный металли­ческий стук в двигателе, снижается его мощность, возможно разрушение деталей;

- происходит абразивный износ поверхностей трения цилиндр-поршень частицами нагара, попадая в картер, частицы нагара за­грязняют масло и вызывают абразивный износ других деталей двигателя.

С нагарообразованием борются, создавая оптимальные экс­плуатационные условия, обеспечивающие поддержание нор­мального теплового состояния двигателя. Нагар с его деталей удаляют механическим или химическим способами, используя различные растворы.

Лаковые отложения получили свое наименование по их сход­ству с лаковыми покрытиями. Они представляют собой богатые углеродом вещества, формирующиеся в виде отложений на поршне – в зоне колец, на юбке и на внутренних стенках. В соста­ве лаковых отложений – оксикислоты, асфальтены и другие про­дукты глубокого окисления масла.

На процесс лакообразования влияют температура, количест­во и качество поступающего масла, техническое состояние поршневой группы двигателя. Наличие лаковых отложений, не­смотря на их относительно небольшую толщину (50-200 мкм), значительно затрудняет работу двигателя. Во-первых, происхо­дит пригорание поршневых колец, что влечет за собой проник­новение масла в камеру сгорания, а следовательно, увеличение его расхода. Во-вторых, ухудшается работа двигателя: снижают­ся его компрессия, так как в картер прорываются газы, и мощ­ность, изнашиваются поверхности цилиндров, повышается веро­ятность поломки колец, а также заклинивания поршней. Теплоизоляционное свойство лаковой пленки препятствует отводу теп­ла от деталей.

На механизм лакообразования влияют такие свойства масла, как термоокислительная стабильность и моющие свойства.

Термоокислительную стабильность определяют как ус­тойчивость масла к окислению в тонком слое при повышен­ной температуре методом оценки прочности лаковой пленки. Чтобы замедлить реакции окисления и уменьшить образова­ние отложений в двигателе, в масла вводят антиокислитель­ные присадки, действие которых основано на торможении образования активных радикалов в начальной стадии цепного процесса окисления; разложения уже образовавшихся пере­кисей и переводе их в устойчивое к окислению состояние, пре­пятствуя тем самым распространению цепной реакции, умень­шении каталитического действия металлов, их окисей и солей на процесс окисления. Наиболее распространены антиокисли­тельные присадки ДФ-11, МНИ ИП-22к, ВНИИ НП-354, ИХП-21 и др.

Под моющими (детергентно-диспергирующими) свойствами понимают способность масла противостоять лакообразованию на горячих поверхностях, препятствуя прилипанию углероди­стых отложений (лака, нагара) путем торможения процессов окисления и их коагуляции. Диспергирующим свойством масла называют его способность препятствовать слипанию углероди­стых частиц и удерживать их в состоянии устойчивой суспензии. При использовании масел с хорошими моющими свойствами де­тали двигателей выглядят чистыми, как бы вымытыми, отсюда и появление термина «моющие».

Для улучшения моющих свойств масел в них вводят мою­щие присадки, обычно в составе композиций присадок. Мою­щие присадки удерживают продукты окисления масла во взве­шенном состоянии, переводят нерастворимые в масле продук­ты окисления в коллоидный раствор и препятствуют прилипа­нию продуктов окисления масла к поверхности нагретых дета­лей. Моющие свойства масел оценивают в баллах от 0 до 6 (максимальное лаковое отложение) по методу ПЗВ, основан­ному на создании в небольшом одноцилиндровом двигателе условий интенсивного лакообразования. Образование лако­вых отложений на поршне двигателя, работающего на маслах с моющими присадками, уменьшается в 3-6 раз (с 3,0-4,5 до 0,5-1,5 балла).

Применяют два типа моющих присадок – зольные и беззоль­ные. К первому типу присадок относятся бариевые и кальциевые соли сульфокислот (сульфонаты), а также алкилфеноляты щелочно-земельных металлов бария и кальция. Их вводят в базо­вые масла в количестве 2-10%. Масла, содержащие зольные при­садки, при сгорании образуют золу, которая прилипает к поверхностям деталей. Беззольные присадки не содержат в своем соста­ве металла, поэтому масла, их включающие, при сгорании не да­ют золы. Применяются два типа беззольных присадок – сукцини-миды и полярные полимеры.


Чтобы в эксплуатационных условиях предотвратить лакообразование, следует избегать работы двигателя с большими перегрузками и повышенным тепловым режимом. Необходимо так­же следить за техническим состоянием поршневой группы.

Осадки – это мазеобразные сгустки, откладывающиеся на стенках поддона картера, крышке клапанной коробки, фильт­рах, в шейках коленчатого вала, маслопроводах и других деталях двигателя. Осадки представляют собой продукты превращения углеводородов масла и топлива в результате процессов окисле­ния, а также загрязнения, попавшие извне. Они способствуют лакообразованию, а отложение осадков в маслопроводах препятст­вует подаче масла к трущимся поверхностям.

Осадки состоят из масла (50-85%), воды (5-35%) – основные составляющие продуктов их окисления – оксикислот (2-15%), карбенов и карбоидов (2-10%), асфальтенов (0,1-15%), а также механических примесей различного происхождения. Вода в осад­ках обычно находится в виде стойкой эмульсии.

Образование осадков происходит при пониженном тепло­вом режиме работы двигателя, когда ухудшается процесс сго­рания топлива и возрастает попадание в картер продуктов его неполного сгорания. Поэтому эти осадки (шлам) нередко на­зывают низкотемпературными отложениями. Если напряжен­ный тепловой режим работы двигателя наиболее опасен образованием нагаров и лаков на деталях цилиндропоршневой группы, то пониженный тепловой – шламообразованием в двигателе. Углистые частицы, водяные пары, тяжелые фрак­ции топлива, кислотные соединения и т.д. активно конденсиру­ются на его деталях, полимеризуются и попадают в масло. Прорыв картерных газов, низкая эффективность системы вентиляции картера – причины наиболее интенсивного проте­кания этого процесса. При работе карбюраторного двигателя в условиях низкотемпературного режима загрязнение центри­фуги шламами в 28 раз больше, чем при работе на высокотем­пературном режиме. Чтобы моторные масла эффективно препятствовали образованию осадков, они должны сохранять вы­сокие диспергирующие свойства на протяжении длительного периода эксплуатации.

Для предотвращения образования осадков необходимо под­держивать оптимальный тепловой режим работы двигателя, применять масла, характеризующиеся хорошей химической ста­бильностью с соответствующими присадками, своевременно ме­нять масляные фильтры, тщательно промывать картер и всю си­стему смазки перед заправкой свежим маслом.

Вопрос № 4: Применение антифризов.


Требования, предъявляемые к жидкости для систем охлаждения двигателей, весьма разнообразны. Такая жидкость не должна замерзать и кипеть во всем рабочем диапазоне температур двигателя, легко прокачиваться при этих температурах, не воспламеняться, не вспениваться, не воздействовать на материалы системы охлаждения, быть стабильной в эксплуатации и при хранении, иметь высокую теплопроводность и теплоемкость.

В последние десятилетия получили широкое распространение низкозамерзающие охлаждающие жидкости - антифризы на основе водных растворов этиленгликоля. Этиленгликоль - двухатомный спирт СН2ОН-СН2ОН - пред­ставляет собой бесцветную жидкость, кипит при +197 °С, а за­стывает при -11,5 °С. Этиленгликоль хорошо растворим в воде. Смеси этиленгликоля с водой имеют более низкую температуру застывания по сравнению с температурой застывания каждого компонента смеси. Так как компоненты смеси имеют разную плотность, а при смешивании плотность изменяется аддитивно, то по плотности смеси возможно установить температуру засты­вания смеси - этиленгликоля и воды. В отличие от воды при замерзании антифризы не расширяются и не образуют твердой сплошной массы. Образуется рыхлая масса кристаллов воды в среде этиленгликоля. Такая масса не приводит к размораживанию блока и не препятствует запуску двигателя. Антифриз после пуска двигателя довольно быстро переходит в жидкое состояние. Однако прогрев отопителя салона затрудняется, поэтому необходимо поддерживать такую концентрацию антифриза, чтобы он не замерзал до температуры 40-35 °С.

В связи с тем, что этиленгликоль оказывает коррозионное действие на металлы, в состав низкозамерзающих жидкостей вводят антикоррозионные присадки. Для предотвращения вспенивания в них иногда добавляют антипенные при­садки. Общее содержание присадок 3-5%.

Антифризам присущи некоторые недостатки. Так, их тепло-проводность и теплоемкость ниже, чем у воды, что несколько снижает эффективность систем охлаждения.

При нагреве антифризы увеличивают объем, ввиду чего в системе охлаждения устанавливается расширительный бачок. Этиленгликоль коррозионно агрессивен по отношению к металлам, поэтому в антифризы при изготовлении добавляют специальные антикоррозионные и противопенные присадки. Общее содержание присадок составляет 3...5%.

Температура кипения антифриза достаточно высока и составляет 120...132°С. Поэтому в герметичной системе охлаждения современного автомобиля при нормальных условиях эксплуатации (без перегрева двигателя) потери антифриза происходят преимущественно из-за утечек (микрощели в радиаторе, ослабление креплений хомутов на шлангах и другие неисправности).

Восполнять уровень антифриза в системе охлаждения водой нежелательно, так как при этом снижается концентрация этиленгликоля в смеси, что ведет к повышению температуры замерзания.

Наиболее широко на автомобилях применяется антифризТосол А40-М.

Допустимый срок службы антифриза "Тосол А40-М" составляет до 3 лет эксплуатации автомобилей или 60 тыс. км пробега.

При более длительных сроках эксплуатации на некоторых деталях системы охлаждения начинают появляться очаги коррозии, в первую очередь на крыльчатке водяного насоса, т.е. на чугуне. Корродируют также детали из алюминия, припой в радиаторе, латунные трубки радиатора и корпус термостата.

Антифриз в процессе эксплуатации изменяет свои характеристики:

снимается запас щелочности, увеличивается склонность к ценообразованию, возрастает агрессивность к резине и увеличивается способность вызывать коррозию металлов. Интенсивность изменения характеристик антифриза зависит от средней рабочей температуры в двигателе, В южных районах, где эти температуры обычно более высокие, антифриз стареет интенсивнее. В северных же районах страны антифриз может служить и более трех лет.

Трехлетний срок службы "Тосола А40-М" гарантируется только при поддержании в течение этого времени требуемой плотности антифриза - не менее 1075 кг/м3. Добавление более 1л свежего концентрата увеличивает срок службы антифриза примерно на 1 год.

Другой вид новой охлаждающей жидкости, близкой по своим свойствам к Тосолу А40-М, - Лена-40, Лена-65. Ее отличие за­ключается в меньшем коррозионном воздействии на чугунные и алюминиевые детали.

Для увеличения срока службы низкозамерзающих жидко­стей в них добавляют также специальное средство "Отэра" (ТУ 6-15-07-112-85) - 1 л на заправку двигателя. Однако это допустимо лишь в том случае, если жидкость после 3 лет службы со­хранила свои свойства: имеет нормальную плотность, не содержит загрязнений, а также если система охлаждения в исправном состо­янии. Препарат "Отэра" - водогликолевый концентрат, содержа­щий комплекс эффективных ингибиторов и пеногаситель. Он спо­собен продлить срок службы, по меньшей мере, на год.

Вопрос № 5: Рассчитать необходимое количество бензина на кабельную машину на базе ГАЗ-53А в зимнее время. Расстояние до объекта равно 240 км, масса спецоборудования – 0,6 тонны.


Исходные данные:

базовая норма расхода автомобиля ГАЗ-53А – 25 л/100 км;

масса полезного груза – W=0,6 т;

надбавка за работу в зимнее время Д=8%;

норма расхода топлива на перевозку полезного груза Hw=1.3 л/100т-км;

пробег автомобиля туда и обратно S=240∙2 км.


HsАП=Hs-Hw∙W


HsАП=25+1.3∙0.6=25.78 л/100 км.


Нормативный расход топлива:


Qн=0,01∙(HsАП∙S)∙(1±0.01Д)


Qн=0,01∙(25,78∙240*2)∙(1+0,01∙18)=146,0179 л.

Список использованной литературы:


Л.С. Васильева Автомобильные эксплуатационные материалы. М., Транспорт 1986.

И.Л. Трофименко, Н.А. Коваленко, В.П. Лобах Автомобильные эксплуатационные материалы. Мн, Вышэйшая школа, 2008.

Бойкачев М. А., Чижонок В. Д. Эксплуатационные материалы. Ч. 1: Моторные топлива: Пособие для студентов транспортных специальностей. Гомель: БелГУТ, 2004.

В.И. Костенко Эксплуатационные материалы (для автомобильного транспорта). Санкт-Петербург 2005.