Реферат: Кодер-декодер речевого сигнала. Амплитудно-фазовое преобразование - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Кодер-декодер речевого сигнала. Амплитудно-фазовое преобразование

Рефераты по коммуникации и связи » Кодер-декодер речевого сигнала. Амплитудно-фазовое преобразование

Казанский государственный университет

имени А.Н. Туполева



Кафедра радиоэлектронных и квантовых устройств


Кодер - декодер речевого сигнала

Амплитудно - фазовое преобразование


Расчетно-пояснительная записка к курсовой работе по дисциплине

«Системы сокрытия информации»


Выполнили студенты

.

Руководитель работы


Успехов в защите


Казань 1997


Содержание


Введение 3

Метод анализа устройств с АФК 4

Выбор четырехполюсника с АФК 6

Кодер на операционном усилителе с АФК 8

Расчет параметров микрофонного усилителя 14

Расчет усилителя низкой частоты 15

Схема кодирующего и декодирующего блоков 17

Аннотация 18

Литература 19

Приложение 1 20


Введение


Эффекты возникновения амплитудно-зависимых фазовых сдвигов в различных, работающих в нелинейных режимах, узлах приемно - усилительных трактов называется «Амплитудно - фазовая конверсия» (АФК).

АФК - от английского слова «conversion» - преобразование.

По условиям эксплуатации большинства устройств в них должны быть применены специальные меры для устранения или ослабления АФК до значений, при которых показатели разрабатываемого устройства ухудшаются незначительно. Решение задачи сводится к созданию цепи, аргументы комплексной функции, передачи которой остается постоянным в широком интервале изменений воздействующих на цепь факторов. Ясно, что на основе известных схемотехнических и конструктивно - технологических решений не представится возможным создание такой цепи. Однако реальным является устройство, фазо - инвариантное к изменениям амплитуды сигнала в ограниченном интервале этих изменений и в конкретных условиях эксплуатации.

В ряде случаев явление АФК является полезным и позволяет обеспечить требуемые показатели радиоэлектронной аппаратуры. В таких устройствах эффекты АФК принудительно необходимы, например, в модуляторах фазы, в системах с предыскажением фазы и др.

В данной работе применяется метод АФК для сокрытия речевой информации телефонного канала.


Метод анализа устройств с АФК


В теоретической радиотехнике известны различные методы исследования.

Наиболее строгим методом, позволяющим описать устройство любого типа и оценить закономерности прохождения сигналов через него, является метод, основанный на решении нелинейных интегрально - дифференциальных уравнений, описывающих физику работы устройства. Получение решения поведения рассматриваемого устройства в широком интервале переменных, представляется затруднительным. Решения делаются для частных случаев и этот метод не универсален т.е. результаты решения не распространяются на другие устройства.

Менее строгим, но более общим является метод замены устройства эквивалентным четырехполюсником с некоторыми характеристиками, свойственными рассматриваемому устройству. Данному четырехполюснику соответствует определенная передаточная функция. Характеристики, определяющие передаточную функцию можно найти теоретически или экспериментально. При аналитическом исследовании цепей с АФК следует использовать четырехполюсник, который отражает лишь основные черты поведения устройства и не учитывает ряд побочных явлений, не играющих принципиальной роли. (Л4)

При воздействии квазигармонического колебания (1) на вход реального, т.е. нелинейного, четырехполюсника на его выходе появляется ряд спектральных составляющих. Отличительной способностью цепей с АФК является изменение фазы составляющих в зависимости от амплитуды входного воздействия.


(1)


X(t), (t) - изменяются по закону передаваемой информации

Выходной сигнал представляется:


(2)


где Yn(t)- медленно изменяющиеся амплитуда n-й гармоники

n(t) - фаза гармоники


Явление АФК сводится к тому, что n(t) отличается от входной функции (t) не только на детерминированный угол 0, характеризующий фазовую постоянную устройства, но и на угол [X(t)], зависящий от уровня входного сигнала:


(3)


Амплитуды выходного и входного сигналов связаны нелинейной зависимостью:


Yn(t)=Yn[X(t)] (4)


отражающей амплитудную нелинейнейность

Выражение (2) можно записать:


y(t)=Y[X(t)]expinw0t (5)


где Yn[X(t)]=Yn[X(t)]expi[X(t)] - комплексная амплитуда выходного сигнала, характеризующая комплексную нелинейность тех устройств, в которых амплитудная нелинейность и АФК проявляются в главной мере при одних и тех же уровнях входного колебания X(t). Устройства, в которых АФК пренебрежимо мала, полностью характеризуется функцией Yn[X(t)], а устройства с АФК - функцией [X(t)] (Л4).


Выбор четырехполюсника с АФК


Выберем в качестве четырехполюсников:

-для кодера компрессор речевых сигналов;

-для декодера экспандер речевого сообщения;

Компрессор речевых сигналов действует по принципу усилителя с нелинейной отрицательной обратной связью (ООС). Это означает, что нелинейные элементы, сопротивление которых изменяется в соответствии с уровнем усиливаемого сигнала, входят в цепь ООС, охватывающей как отдельные каскады, так и усилитель в целом.

Для обеспечения требуемого закона изменения коэффициента усиления, необходимо определенным образом выбрать способ включения нелинейных элементов и режимы их работы.

Рассмотрим причины АФК в усилителях с нелинейной обратной связью. На основании известных соотношений:

о

К

К

пределяющих комплексный коэффициент усиления усилителя с обратной связью. На рис.1 построена векторная диаграмма для случая гармонического сигнала, позволяющая судить о закономерностях изменениях показаний усилителя в зависимости от глубины ООС.


Кос


к

Кос


1

1

ос

ос


к

ос

ос



1/К

1/Кос


1/К

1/Кос

Рис.1


На рис.1 векторная диаграмма, определяющая коэффициент усиления усилителя с ООС, здесь:

; Кос - модуль коэффициента усиления; ос-фазовый сдвиг, создаваемый усилителем с ООС.

- не комплексный коэффициент усиления усилителя без ООС.  - коэффициент передачи канала обратной связи, предполагаемой действительной величиной, т.е. рассматривается усилитель с частотно-независимой ООС.

Из диаграммы следует, что с увеличением глубины ООС, вносимый усилителем фазовый сдвиг- уменьшается.

(7)

Но поскольку в усилителе глубина ООС растет с увеличением уровня сигнала (компрессор):

=F2(Uвхм) (8)

то связь фазового сдвига с изменением уровня входного сигнала при W=const:

(9)

В экспандере процесс изменения ООС обратный:

(10)

т.е. для малых амплитуд усиления мало, а для больших амплитуд усиление велико.


Кодер на операционном усилителе с амплитудно - фазовой конверсией


Эквивалентная схема кодера (декодера) приведена на рис. 2


Z1

Z2



-


+


-



Z3





Рис.2


Коэффициенты усиления идеального усилителя:

(11)

Для кодера выберем:

Z2=R1

Коэффициент передачи кодера:

(12)

Цепь с сопротивлением Z2 представлена на рис. 3. Сопротивление R вводится для работы усилителя с малым уровнем сигнала.

R2

VD1


Д

R2

ля декодера берем:

R

VD2

C


Рис. 3


Коэффициенты передачи декодера:

(13)


Принципиальные схемы кодера и декодера

VD1

C1


R4




VD2


R3



R1



DA1






R2




a

VD3

)


R8

C2

R6





VD4


DA2


R5








R7






Рис.4 б)

а) кодер

б) декодер


Коэффициенты передачи для схемы рис.4


Кодер:

Коэффициент передачи для декодера


где: R3=R5; R4=R6; C1=c2

(19)

Сопротивление R1 выбирается из max тока через диод

Ig=IR1

IR1=Uвх/R1=R1=Uвх/IR1

при Ig=0.1 mA; Rg=26/0.1=260 Om;

при Uвх=0.1B; R1=0.1/0.1=1 Kom;

Выберем коэффициент в (15) К0=10, тогда

R3=R1*K0=1.0*10=10Kom

Выберем сопротивление R4=100 ом, от случайных больших воздействий напряжения защищающей диоды VD1 и VD2.

Возьмем конденсатор С1 исходя из его реактивного сопротивления на частоте 300 Гц.

Xc1=2(R4+Rgmin)=2(100+260)=720 Om

Выберем ближайший номинал конденсатора С1:

КМ6 - М750-25-0.68 10%

Расчетные значения модуля и аргумента коэффициента передачи кодера, рассчитанные по программе Koder AFK, см. Приложение 1, приведены в таблице 1.


Таблица значений коэффициента передачи кодера

от амплитуды входного сигнала, вычисленных по программе

Koder AFK


Таблица 1.

Uвх

К

FK,рад

Uвых

0,001 7,23 -0,0072 -0,008
0,011 2,193 -0,222 -0,022
0,021 1,398 -0,442 -0,028
0,031 1,128 -0,609 -0,034
0,041 1,003 -0,733 -0,04
0,051 0,935 -0,826 -0,046
0,061 0,894 -0,897 -0,054
0,071 0,867 -0,953 -0,061
0,081 0,849 -0,997 -0,068
0,091 0,836 -1,033 -0,075
0,101 0,826 -1,063 -0,082

Таким образом:

R2=R3=R5=10 Kom;

R4=R6=100 Om;

C1=C2=0.65 мкф;

R1=R7=R8=1 Kom;

DA1,DA2 - КР140УД14

Данная схема закрытия речевой информации в законченном виде приведена на рис.5

Umax=0.2mB


Uвх=0-0.1B

Uвых=0-0.082В



Кодер


A1

УМ1



BM1

ВА1



А) Кодирующий блок


Декодер

УМ2

А2

Uвых=0-1В

Uвх=0-0.082В




ВМ2

ВА2



Б) Декодирующий блок




Р

Rg

ис.5 Структурная схема устройства закрытия речевой информации.

C




R


R1



a









Рис.6 Принципиальная схема кодера


В точке а усилителя напряжение приблизительно равно 0, т.к. коэффициент усиления О.У. велико - 105. Для того, чтобы Ua=0 токи через R1 и цепь Rg, C, R приблизительно одинаковы. Входное сопротивление источника сигнала велико и ток в R1 не протекает.

IR1=Irg,C,R (20)

Напряжение на выходе кодера:

(21)

Ток I в формуле (21) при условии (20):

I=Uвх/R1 (22)

Перепишем выражение (21) с учетом (22)

(23)


R1




a


C

R



Rg




рис. 7 Принципиальная схема декодера


Для схемы на рис.7 Напряжение на входе, при Ua=0

(24)

Решив уравнение (16) относительно I получим зависимость:

I=F(Uвх.дек) (25)

Выходное напряжение на выходе декодера рис. 7 :

Uвых.дек=R1F(Uвх.дек)=R1I (26)

Выходным напряжением декодера является напряжение кодера:

Uвх.дек= Uвых.дек. Таким образом схема рис. 7 Решает обратную задачу нахождения тока от значения формул (25) и (26).

На основании формул (22) и (26) выходное напряжение декодера:


Расчет параметров микрофонного усилителя


Выберем микрофон типа МД-62. Микрофон имеет параметры:

Диапазон рабочих частот: 120-10000 Гц

Номинальное сопротивление нагрузки: 250 Ом

Чувствительность: 88 Дб


Определим напряжение на нагрузке:

88Дб=80Дб+8Дб=6,31*10-3

Мощность в нагрузке:

Определим коэффициент усиления микрофонного усилителя для нормальной работы кодера. Напряжение на входе кодера Uвх=0-1.1 В.

Используем схему с двумя каскадами усиления, построенных на ОУ:

К=К1К2=10050=5000

Схема усилителя приведена на рис. 8

R2

R5



R1


DA

R4

DA





R3

R6





Рис. 8 Принципиальная схема микрофонного усилителя


В данном усилителе применим ОУ типа КР140УД14 (л3)

Сопротивление R1 определяется из условия согласования микрофона (номинальное сопротивление нагрузки)

R1=250 Ом

Сопротивление R2 определяется из коэффициента усиления каскада:

R2=KR1=100250=25 кОм.

Сопротивление R3:

Номинальный ток нагрузки КР140УД14 Iн=20 мА;

Максимальное входное напряжение микросхемы Uмах=13 В;

Сопротивление в цепи нагрузки - R4

Сопротивление R5 при К=50

R5=KR4=50620=31 кОм

Ближайшее сопротивление 30 кОм

Сопротивление R6 = 620 Ом.

Для декодерного блока рис. Микрофонный усилитель будет иметь такую же принципиальную схему, но в цепи обратной связи включают переменное сопротивление. Переменное сопротивление служит для изменения коэффициента усиления микрофонного усилителя декодера, чтобы получить уровень входных сигналов 0.082 В на входе декодера.


Расчет усилителя низкой частоты


Выберем громкоговоритель типа 0.5 ГД-11 с параметрами: (Л2)

Полоса рабочих частот: 150  7000 Гц;

Сопротивление звуковой катушки : 5 Ом;

Размеры: 102-50 мм;

Масса: 150 гр.


В качестве усилителя НЧ применим микросхему К174УН7 (Л3). Ее параметры:

Рвых  4.5 Вт на нагрузке 4 Ом при напряжении питания 15 В. Схема включения микросхемы приведена на рис. 9 . Выходная мощность усилителя регулируется потенциометром R1.

Конденсаторы:

С1 = 100 пФ; С2 = 500 пФ; С3 = 100 пФ = С5;

С4 = 2700 пФ; С6 = 510 пФ; С7 = 0.1 мкф; С8 = 100 пФ.


Сопротивления:

R1 = R3 = 100 Ом; R2 = 56 Ом; R4 = 1 Ом; R5 = 4 Ом.


Uпит

C5

R3




Вх

C1


1

4

12


R1

8

UВЫХ



К174УН7


9


C6


6

7

10

5


C2

С8



R2

C4

R4

R5


C3

C7






Рис. 9 Усилитель мощности К174УН7 схема электрическая, принципиальная.


Аннотация


В данной работе требовалось сконструировать устройство для кодирования и декодирования сигнала по принципу амплитудно - фазового преобразования.

Данное (разработанная нами устройство) полностью отвечает данным требованиям. В частности прибор может быть подключен к телефонной линии и исключить возможность подслушивания телефонного разговора третьими лицами. У этого прибора - большое будущее т.к. многие деловые люди могут заинтересоваться данной разработкой.


Литература


Амплитудно - фазовая конверсия /Крылов Г.М., Пруслин В.З., Богатырев Е.А. и др. Под ред. Г.М. Крылова. - М.: Связь, 1979.-256 с., ил.

Бодиловский В.Г., Смирнова М.А. Справочник молодого радиста. Изд. 3-е переработ. И доп. М.,»Высшая школа», 1975 г.

Цифровые и интегральные микросхемы: Справочник/ С.В. Якубовский, Л.Н.Ниссельсон, В.И.Кулешова и др.; под ред. С.В. Якубовского. - М.: Радио и связь, 1990.-496 с. Ил.

Фолкенбери Л.М. Применение операционных усилителей/ под ред. Гальперина, 1985 - 572 с.


Приложение 1

Программа расчета коэффициента передачи

кодера с АФК на операционном усилителе.


1 REM KODER AFK

10 R1=

20 R3=

30 R4=

40 C1=

50 F=

60 WC1=

70 FOR U=0.001 TO 0.11 STEP 0.01

80 RD=26E-3*R1/U

90 K0=R3/R1

100 A=RG+R4

110 B=1/WC1

120 C=RG+R3+R4

130 K=K0*SQR((A^2+B^2)/(C^2+B^2))

140 FK=ATN(B/C)-ATN(B/A)

150 PRINT K; TAB 17; FK

160 NEXT U