Реферат: Теория устойчивости - Refy.ru - Сайт рефератов, докладов, сочинений, дипломных и курсовых работ

Теория устойчивости

Рефераты по математике » Теория устойчивости

Введение


Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.

Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.


1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.

Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений


x’ = f ( t , x )


(1)


с начальными условиями x ( t0 ) = x0 (2)

где x = ( x1, x2, ... , xn ) - n - мерный вектор; t  I = [t0, + [ - независимая переменная, по которой производится дифференцирование;


f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция.

Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.

x


0 t

Рис.1

Т ак как задача теории устойчивости впервые возникла в механике, то переменную t принято интерпретировать как время, а искомую вектор-функцию x ( t ) - как движение точки в зависимости от времени в пространстве Rn+1 (рис.1)

Пусть задача Коши (1), (2) удовлетворяет условиям теоремы существования и единственности. Тогда через каждую точку ( t0 , x0 ) области единственности решений проходит только одна интегральная кривая. Если начальные данные ( t0 , x0 ) изменяются, то изменяется и решение. Тот факт, что решение зависит от начальных данных, обозначается следующим образом: x ( t ) = x ( t ; t0 , x0 ). Изменение этого решения в данной математической модели с изменением начальных данных ( t0 , x0 ) приводят к существенному изменению решения x ( t ; t0 , x0 ) , приводит к тому, что такой моделью нельзя пользоваться, поскольку начальные данные ( t0 , x0 ) получаются из опыта, а изменения не могут быть абсолютно точными. Естественно, что в качестве математической модели пригодна лишь та задача Коши, которая устойчива к малым изменениям начальных данных.

Определим понятие устойчивости, асимптотической устойчивости и неустойчивости в смысле Ляпунова. Для этого отклоение решения x ( t ) = x ( t ; t0 , x0 ) , вызванное отклонением  x0 начального значения x0 , будем записывать следующим образом:

| x ( t ; t0 , x0 +  x0 ) - x ( t ) | = | x ( t ; t0 , x0 +  x0 ) - x ( t ; t0 , x0 ) |.


Определение 1. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если оно непрерывно по x0 на интервале I = = [ t0, + [ , т.е.   > 0   > 0 такое, что   x0

|  x0 |    | x ( t ; t0 , x0 +  x0 ) - x ( t ) |    t  t0.

Если, кроме того, отклонение решения x ( t ) стремится к нулю при t  + для достаточно малых  x0 , т.е.   > 0   x0.

|  x0 |    | x ( t ; t0 , x0 +  x0 ) - x ( t ) |  0 , t  + . (3)

то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).

Аналогично определяются различные типы устойчивости решения в отрицательном направлении.

Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 +  x0 ) , близкие в начальный момент t0 к решению x ( t ) (т.е. начинающиеся в пределах  - трубки ) , не выходят за пределы  - трубки при всех значениях t  t0 .

x


0 t

Рис.2


2 ) Асимптотическая устойчивость есть устойчивость с дополнительным условием (3) : любое решение x1 ( t ) , начинающееся в момент t0 в  - трубке, с течением времени неограниченно приближается к решению x ( t ) (рис.2). Трубка радиуса  называется областью притяжения решения x ( t ). Решение x2 ( t ), начинающееся при t = t0 за пределами области притяжения, но в пределах  - трубки, не покидает  - трубку, хотя может и не приближаться к решению x(t).


Определение 2. Решение x ( t ) = x ( t ; t0 , x0 ) системы (1) называется неустойчивып по Ляпунову в положительном направлении (или неустойчивым), если оно не является устойчивым в положительном направлении.

Аналогично определяется неустойчивость в отрицательном направлении.

Комментарий к определению 2. Геометрически неустойчивость по Ляпунову означает, что среди решений, близких в начальный момент t0 к решению х ( t ) , найдется хотя бы одно, которое в некоторый момент t1 ( свой для каждого такого решения) выйдет за пределы  - трубки (рис.3).

Приведем примеры из механики, иллюстрирующие определения различных типов устойчивости для одномерного случая, т.е. n = 1.

Рассмотрим маятник, состоящий из точечной массы m, укрепленной на невесомом стержне длиной l (рис.4). Выведем маятник из состояния I, отклонив стержень на угол  ; тогда, как известно из опыта, он будет стремиться занять вновь положение I. Если пренебречь сопротивлением окружающей среды, то маятник будет колебаться возле положения I сколь угодно долго с амплитудой, равной начальному отклонению, - это модель устойчивого положения равновесия. Если же учитывать сопротивление окружающей среды, то амплитуда колебаний маятника будет уменьшаться и в итоге он снова займет положение I - это модель асимптотически устойчивого положения равновесия. Если маятник находится в положении II, то малейшее его смещение приведет к удалению маятника от состояния II - это модель не устойчивого положения равновесия.


x


0 t

Рис.3 Рис.4


Исследование устойчивости произвольного решения x ( t ) системы (1) всегда можно свести к исследованию устойчивости нулевого решения некоторой преобразованной системы. Действительно, в системе (1) произведем подстановку y ( t ) = x - x (t). Тогда получим систему

y’ = F ( t, y ). (4)

где F ( t , y ) = f ( t , y ( t ) + x ( t ) ) - f ( t , x ( t ) ) , F (t, 0)  0  t  t0.

Решению x ( t ) системы (1) соответствует нулевое решение y (t)  0 системы (4).

В дальнейшем будем предполагать, что система (1) имеет нулевое решение, т.е. f ( t , 0 ) = 0  t  t0, и ограгничимся исследованием устойчивости нулевого решения. Переформулируем определения различных типов устойчивости для нулевого решения x ( t )  0 системы (1).


Определение 3. Нулевое решение x ( t )  0 системы (1) называется устойчивым по Ляпунову в положительном направлении (или устойчивым), если   > 0   =  (  ) > 0 такое, что  x0

|  x0 |    | x ( t ; t0 , x0 ) |    t  t0.

Если кроме того,

 > 0  x0 |  x0 |    | x ( t ; t0 , x0 ) |  0 , t  + ,

то решение x ( t )  0 системы (1) называется асимптотически устойчивым в положительном направлении ( или асимптотически устойчивым ) .

Определение 4. Нулевое решение x ( t )  0 системы (1) называется неустойчивым по Ляпунову в положительном направлении (или неустойчиво), если оно не является устойчивым в положительном направлении, т.е.

 > 0  t1 > t0   > 0 x0  0 | x0 |    | x ( t ; t0 , x0 ) | >  .

Геометрическая интерпритация устойчивости, асимптотической устойчивости и неустойчивости нулевого решения x ( t )  0 системы (1) дана соответственно на рис.5-7.


x


t

0


Рис.5

x


t

0


Рис.6



x


t

0


Рис.7



2. Устойчивость решения автономной системы. Устойчивость решения системы линейных дифференциальных уравнений с постоянными коэффициентами.

Система обыкновенных дифференциальных уравнений называется автономной (или стационарной, или консервативной, или динамической), если независимая переменная не входит явно в систему уравнений.

Нормальную автономную систему n - го порядка можно записать в векторной форме :

dx / dt = f ( x ). (5)

Рассмотрим задачу Коши для системы (5) с начальными условиями (2). В дальнейшем предполагаем, что задача Коши (5), (2) удовлетворяет условиям теоремы существования и единственности.

Пусть x = x ( t ) - есть решение системы (5). Направленная кривая  , которую можно параметрически задать в виде xi = xi ( t ) ( i = 1, ... , n ), называется траекторией (фазовым графиком) системы (5) или траекторией решения x = x ( t ). Пространство Rn с координатами ( x1 , ... , xn ), в котором расположены траектории системы (5), называется фазовым пространством автономной системы (5). Известно, что интегральные кривые системы (5) можно параметрически задать в виде t = t , x1 = x1 ( t ), ... , xn = xn ( t ). Следовательно, интегральная кривая принадлежит пространству Rn+1 с координатами ( t , x1 , x2 , ... , xn ) , а траектория является проекцией интегральной кривой на пространство Rn параллельно оси t. Проиллюстрируем это для случая n = 2 , т.е. когда Rn+1 - трехмерное пространство, а фазовое пространство Rn - двумерная плоскость. На рис.8,а изображена интегральная кривая, заданная параметрическими уравнениями t = t, x1 = x1 ( t ) , x2 = x2 ( t ), на рис.8,б - ее проекция на плоскость, т.е. траектория, заданная параметрическими уравнениями x1 = x1 ( t ) , x2 = x2 ( t ). Стрелкой указано направление возрастания параметра t.

x2 x2


0 t 0 x1


x1

а) Рис.8 б)


О пределение 5. Точка ( a1, a2 , ... , an ) называется точкой покоя (положением равновесия) автономной системы (5), если правые части f1 , f2 , ... , fn системы (5) обращаются в этой точке в нуль, т.е. f (a) = 0, где a = ( a1 , a2 , ... , an ) , 0 = ( 0 , 0 , ... , 0 ) .

Если ( a1 , ... , an ) - точка покоя, то система (5) имеет постоянное решение x ( t ) = a. Как известно, исследование устойчивости любого, а значит, и постоянного решения a можно свести к исследованию устойчивости нулевого решения. Поэтому далее будем считать, что система (5) имеет нулевое решение x ( t )  0 , т.е. f ( 0 ) = 0, и точка покоя совпадает с началом координат фазового пространства Rn. В пространстве Rn+1 точке покоя соответствует нулевое решение. Это изображено на рис.8 для случая n = 2.

Таким образом, устойчивость нулевого решения системы (5) означает устойчивость начала координат фазового пространства системы (5), и наоборот.

Дадим геометрическую интерпретацию устойчивого, асимптотически устойчивого и неустойчивого начала плоскости, т.е. когда n = 2. Для этого следует спроектировать аналоги рис.5-7 в двумерном случае на фазовую плоскость R2, причем проекциями  - трубки и  - трубки являются окружности с радиусами  и  . Начало x = 0 устойчиво, если все траектории, начинающиеся в пределах  - окружности, не покидают  - окружность  t  t0 (рис.9) ; асимптотически устойчиво, если оно устойчиво и все траектории, начинающиеся в области притяжения  , стремятся к началу (рис.10) ; неустойчиво, если для любой  - окружности и всех  > 0 существует хотя бы одна траектория, покидающая ее (рис.11).

Нормальная система линейных дифференциальных уравнений с постоянными коэффициентами, имеющая вид

dx / dt = A x, (6)

где A - постоянная матрица размера n  n , является частным случаем системы (5). Следовательно, для этой системы справедливы все сделанные выше утверждения об автономных системах.

x2




0 x1


Рис.9

x2




0 x1


Рис.10


x2




0 x1


Рис.11



3. Простейшие типы точек покоя.

Пусть имеем систему дифференциальных уравнений

 dx / dt = P ( x , y ),

(A)

 dy / dt = Q ( x , y ).


Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.

Рассмотрим систему

 dx / dt = a11 x + a12 y,

(7)

 dy / dt = a21 x + a22 y.


где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде

x =  1 e k t , y =  2 e k t . (8)

Для определения k получаем характеристическое уравнение

a11 - k a12

= 0. (9)

a21 a22 - k


Рассмотрим возможные случаи.

I. Корни характеристического уравнения действительны и различны. Подслучаи :

1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).

2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).

3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло).

4) k1 = 0, k2 > 0. Точка покоя неустойчива.

5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически.

II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :

1) p < 0 , q  0. Точка покоя асимптотически устойчива (устойчивый фокус).

2) p > 0 , q  0. Точка покоя неустойчива (неустойчивый фокус).

3) p = 0, q  0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.

III. Корни кратные: k1 = k2 . Подслучаи :

1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).

2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).

3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.

Для системы линейных однородных уравнений с постоянными коэффициентами

dxi n

=  ai j xj ( i = 1 , 2 , ... , n ) (10)

dt i=1


характеристическим уравнением будет

a11 - k a12 a13 ... a1n

a21 a22 - k a23 ... a2n = 0. (11)

. . . . . . . .

an1 an2 an3 ... ann - k


1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t )  0 ( i = 1 , 2 , ... , n ) асимптотически устойчива.

2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t )  0 ( i = 1, 2, ... n ) системы (10) неустойчива.

3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t )  0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически.

Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами

.

 x = a11 x + a12 y,

 . (12)

 y = a21 x + a22 y


характеристическое уравнение (9) приводится к виду

k2 + a1 k + a2 = 0.

1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво.

2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2 > 0 , то нулевое решение устойчиво, но не асимптотически.

3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически.


4. Критерий устойчивости Михайлова.

Частотные критерии устойчивости получили наиболее широкое практическое применение, так как, во-первых, они позволяют судить об устойчивости замкнутой системы по более простой передаточной функции системы W ( s ) ; во-вторых, анализ устойчивости можно выполнять и по экспериментально определенным частотным характеристикам; в-третьих, с помощью частотных характеристик можно судить и о качестве переходных процессов в системе.

А.В. Михайлов первым предложил использовать развитые в радиотехнике Найквистом частотные методы для анализа устойчивости линейных систем регулирования. Сформулированным им в 1938 г. критерий устойчивости назвали его именем. Рассмотрим существо этого критерия.

Пусть характеристическое уравнение замкнутой системы имеет вид

D (  ) =  n + a1  n-1 + a2  n-2 + ... + an = 0. (13)

Зная его корни  1 ,  2 , ... ,  n , характеристический многочлен для уравнения (13) запишем в виде

D (  ) = (  -  1 ) (  -  2 ) ... (  -  n ). (14)


Im Im


0 Re 0 Re


а) б)


Рис.12. Векторное изображение сомно-жителей характерис-тического уравнения замкнутой системы на плоскости :

а - для двух корней  и  i ;

б - для четырех корней  1 ,  ‘1 ,  2 ,  ‘2


Графически каждый комплексный корень  можно представить точкой на плоскости. Поэтому, в свою очередь, каждый из сомножителей уравнения (14) можно представить в виде разности двух векторов (  -  i ), как это показано на рис.12,а. Положим теперь, что  = j  ; тогда определяющей является точка  на мнимой оси (рис.12,б). При изменении  от -  до +  векторы j  -  1 и j  -  ‘1 комплексных корней  и  ‘1 повернуться против часовой стрелки, и приращение их аргумента равно +  , а векторы j  -  2 и j  -  ‘2 повернутся по часовой стрелке, и приращение их аргумента равно -  . Таким образом, приращение аргумента arg( j  -  i ) для корня характеристического уравнения  i , находящегося в левой полуплоскости, составит +  , а для корня, находящегося в правой полуплоскости, -  . Приращение результирующего аргумента  arg D( j  ) равно сумме приращений аргументов его отдельных сомножителей. Если сре1ди n корней характеристического уравнения m лежит в правой полуплоскости, то приращение аргумента составит

 arg D( j  ) = ( n - m )  - m  = ( n - 2m )  . (15)

-  <  <  для левой для правой

полуплоскости полуплоскости

Отметим теперь, что действительная часть многочлена

D ( j  ) = ( j  )n + a1 ( j  )n-1 + a2 ( j  )n-2 + ... + an (16)

содержит лишь четные степени  , а мнимая его часть - только нечетные, поэтому

arg D ( j  ) = - arg D ( -j  ), (17)

и можно рассматривать изменение частоты только на интервале  от 0 до  . В этом случае приращение аргумента годографа характеристического многочлена

 arg D( j  ) = ( n - 2m )  / 2 . (18)

0   < 

Если система устойчива, то параметр m = 0, и из условия (18) следует, что приращение аргумента

 arg D( j  ) = n  / 2 . (19)

0   < 

На основании полученного выражения сформулируем частотный критерий устойчивости Михайлова: для того чтобы замкнутая система автоматического регулирования была устойчива, необходимо и достаточно, чтобы годограф характеристического многочлена в замкнутой системе (годограф Михайлова) начинался на положительной части действительной оси и проходил последовательно в положительном направлении, не попадая в начало координат, n квадрантов комплексной плоскости ( здесь n - порядок характеристического уравнения системы).

j V’ j V’


0 U’ 0 U’


а) б)

Рис.13. Примеры годографов Михайлова для различных характеристических уравнений замкнутых систем:

а - устойчивые системы при n = 1 - 6 ; б - неустойчивые системы при n = 4 и различных параметрах


Соответствующие устойчивым системам годографы Михайлова для уравнений различных порядков построены на рис. 13,а. На рис. 13,б построены годографы Михайлова для неустойчивых систем при n = 4.