Конечно же, “элементарность’’ данного доказательства относительна. Однако оно должно быть понятно студенту первого курса вуза, изучающему высшую математику.
Будем доказывать от противного. Предположим, что
,
где и — натуральные числа.
Учитывая данное равенство и рассматривая разложение в ряд:
,
получаем следующее равенство:
Представим данную сумму в виде суммы двух слагаемых, одно из которых — сумма членов ряда по от до , а второе — сумма всех остальных членов ряда:
Теперь перенесем первую сумму в левую часть равенства:
Умножим обе части полученного равенства на . Получим
Теперь упростим полученное выражение:
Рассмотрим левую часть полученного равенства. Очевидно, что число целое. Целым является также и число , поскольку (отсюда следует, что все числа вида целые). Тем самым левая часть полученного равенства — целое число.
Перейдем теперь к правой части. Эта сумма имеет вид
По признаку Лейбница этот ряд сходится, и его сумма есть вещественной число, заключенное между первым слагаемым и суммой первых двух слагаемых (со знаками), т.е.
.
Оба эти числа при лежат между и . Следовательно, , т.е. — правая часть равенства — не может быть целым числом. Получили противоречие: целое число не может быть равно числу, которое не является целым.
Это противоречие доказывает, что число не является рациональным.
Другие работы по теме:
Атомарный факт
Вадим Руднев Атомарный факт - один из определяющих терминов логикого позитивизма, в частности "Логико-философского трактата" (1921) Людвига Витгенштейна.
Теорема 15.2
Теорема 15.2. Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. Доказательство . Пусть данная прямая и @ — данная плоскость. По аксиоме I существует точка
Простое доказательство великой теоремы Ферма
Представление великой теоремы Ферма как диофантового уравнения. Использование для ее доказательства метода замены переменных. Невозможность решения теоремы в целых положительных числах. Необходимые условия и значения чисел для решения, анализ уравнений.
Доказательство великой теоремы Ферма
Доказательство теоремы Ферма методами теоремы арифметики, элементарной алгебры с использованием методов решения параметрических уравнений для четных и нечетных показателей степени. Теорема о разложении на простые множители целых составных чисел.
Доказательство великой теоремы Ферма
Суть великой теоремы Ферма. Формирование диофантового уравнения. Доказательство вспомогательной теоремы (леммы). Особенности составления параметрического уравнения с параметрами. Решение великой теоремы Ферма в целых положительных (натуральных) числах.
Проблема иррациональных чисел
Проблема иррациональности впервые обнаружена в геометрии при извлечении корня. Она известна еще в эпоху “античности”, связываемую с именем Пифагора.
Элементарное доказательство Великой теоремы Ферма
Идея предлагаемого вниманию читателя элементарного доказательства Великой теоремы Ферма исключительно проста: после разложения чисел a, b, c на пары слагаемых, затем группировки из них двух сумм U' и U''.
Элементарное доказательство великой теоремы Ферма
Великая (большая и последняя) теорема Ферма, ее доказательство для простых показателей. Целочисленные решение уравнения Пифагора в "Арифметике" Диофанта. Формулы для решения уравнения Пифагора в виде взаимно простых чисел. Преобразование уравнения Ферма.
Теорема Ферма. Бесконечный спуск для нечетных показателей n
Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4. Доказательство.
Доказательство теоремы Ферма для n=4
Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.
Доказательство теоремы Ферма для n=3
Доказательство великой теоремы Ферма для n=3 методами элементарной алгебры с использованием метода решения параметрических уравнений. Диофантово уравнение, решение в целых числах, отсутствие решения в целых положительных числах при показателе степени n=3.
Доказательство сильной гипотезы Гольдбаха-Эйлера
Доказательство гипотезы Гольдбаха-Эйлера. Гипотезы о том, что любое четное число, большее двух, может быть представлено в виде суммы двух простых чисел и любое нечетное число М, большее семи, представимо в виде суммы трех нечетных простых чисел.
Доказательство Великой теоремы Ферма за одну операцию
Идея элементарного доказательства великой теоремы Ферма исключительно проста: разложение чисел a, b, c на пары слагаемых, группировка из них двух сумм U' и U'' и умножение равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 1
Теорема Наполеона
Эту красивую теорему приписывают известному великому полководцу и государственному деятелю Наполеону Бонапарту. С учетом того, что Наполеон был артиллеристом, неудивительно, что он увлекался геометрией.
Доказательство теоремы Ферма для n 3
Доказательство великой теоремы Ферма для показателя степени n=3 Великая теорема Ферма формулируется следующим образом: диофантово уравнение: Аn+ Вn = Сn (1)
Объем усеченной пирамиды
Дано: Пирамида SABC, пирамида A1B1C1ABC, Sосн=S, Sсеч=S1 Доказать, что V=1/3h(S + SS1) Доказательство. Объем пирамиды SABC равен: V=1/3Sh1, а пирамиды SA1B1C1 равен: V=1/3S1h2. Vу=Vп – Vм= 1/3(Sh1 – S1h2) (*)
Контрольные билеты по алгебре
Алгебра и начала анализа. 11 класс. Билет №1. Функция y = sin x, ее свойства и график. Показательная функция, ее свойства для случая, когда основание больше единицы (доказательство одного из свойств по желанию ученика).
Доказательство Великой теоремы Ферма за одну операцию
Идея предлагаемого вниманию читателя элементарного доказательства Великой теоремы Ферма исключительно проста: после разложения чисел a, b, c на пары слагаемых, затем группировки из них двух сумм U' и U'' и умножения равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 11) (k+3)-я цифра в числе a^n + b^n – c^n (где k – число нулей на конце числа a + b – c)
Доказательство Великой теоремы Ферма для степени n 3
Файл: FERMA-n3-algo © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма для показателя степени n=3 формулируется следующим образом: диофантово уравнение:
Доказательство Великой теоремы Ферма 6
Файл: FERMA-ЛАРЧИК © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 28607 Доказательство Великой теоремы Ферма Великая теорема Ферма формулируется следующим образом: диофантово уравнение:
Доказательство теоремы Ферма для n 4
Доказательство великой теоремы Ферма для показателя степени n=4 Великая теорема Ферма формулируется следующим образом: диофантово уравнение: Аn+ Вn = Сn (1)
Краткое доказательство гипотезы Билля
Формулировка гипотезы Билля и методика ее краткого доказательства. Анализ составляющих гипотезу алгебраических выражений. Использование метода замены переменных при доказательстве гипотезы Билля, не имеющей решения при целых положительных числах.
Алгебраическое доказательство теоремы Пифагора
Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
Доказательство сильной гипотезы Гольдбаха-Эйлера
Н.М. Козий, 2008, [UA] Свидетельство Украины № 25256 о регистрации авторского права ДОКАЗАТЕЛЬСТВО СИЛЬНОЙ ГИПОТЕЗЫ ГОЛЬДБАХА-ЭЙЛЕРА Сильная гипотеза Гольдбаха-Эйлера формулируется следующим образом: любое четное число, большее двух, равно сумме двух простых чисел:
Великая теорема Ферма
Когда дьявол узнал об условии заключения договора с ученым-математиком о продажи его души, он рассмеялся и сказал: «Нет ничего проще. У меня есть доказательство этой теоремы, написанное самим Ферма».
Гипотеза Биля
Доказательство гипотезы Биля методами элементарной алгебры: сочетание методов решения параметрических уравнений и замены переменных (теорема Ферма). Ее формулировка в виде неопределенного уравнения, которое не имеет решения в целых положительных числах.
Ламберт, Иоганн Генрих
Введение 1 Философия 2 Математика 3 Сочинения 5 Источник Введение Иоганн Генрих Ламберт (нем. Johann Heinrich Lambert; 26 августа 1728, Мюлуз, Эльзас — 25 сентября 1777, Берлин) — физик, философ, математик; был академиком в Мюнхене и Берлине.