Ученик 8 В класса Моусош № 6 Скворцов Сергей Пифагор "Следует избегать всеми средствами, отсекая огнем и мечом, и всем, чем только можно, от тела - болезнь, от души - невежество, от желудка - излишнего, от города - смуту, от дома - раздоры, и от всего вместе - неумеренность." Открытия Пифагора • Геометрия. Знаменитая и всеми любимая теорема Пифагора плюс построение некоторых многоугольников и многогранников. • География и астрономия. Одним из первых высказал гипотезу о шарообразной форме Земли, считал, что мы – не единственные во Вселенной. • Музыка. Зависимость звука от длины струны или флейты. • Нумерология. Многие из нас знают, что такое нумерология, но кто первый совместил числа и прогнозы на будущее? Формулировки теоремы Пифагора Геометрическая формулировка: Изначально теорема была сформулирована следующим образом: В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. Алгебраическая формулировка: В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. То есть, обозначив длину гипотенузы треугольника через c, а длины катетов через a и b: Доказательство теоремы Пифагора На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Рассмотрим один из способов. Дано: ABC-треугольник;C – прямой угол Дано: ABC-треугольник;C – прямой угол Проведем высоту CD из вершины прямого угла С По определению косинуса угла (Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе) соsА=AD/AC=AC/AB. Отсюда AB*AD=AC?. Аналогично соsВ=BD/BC=BC/AB. Отсюда AB*BD=ВС?. Складывая полученные равенства почленно и замечая, что AD+DB=AB, получим: АС?+ВС?=АВ(AD + DB)=АВ?. Теорема доказана. Следствия из теоремы Пифагора В прямоугольном треугольнике любой из катетов меньше гипотенузы Для всякого острого угла ? cos?<1 Теорема Пифагора.применение Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ? + 4 ? = 5? было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета(согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Но еще раньше с ее помощью научились измерять воображаемые треугольники на небе, вершинами которых были звезды. Сейчас её применяют даже для измерения расстояний между космическими кораблями. В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку, это явилось следствием открытий итальянского астронома Скиапарелли (открыл на Марсе каналы которые долгое время считались исскуственными) и др. В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса подобных человеку, это явилось следствием открытий итальянского астронома Скиапарелли (открыл на Марсе каналы которые долгое время считались исскуственными) и др. Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. Парижской академией наук была даже установлена премия в 100000 франков тому, кто первый установит связь с каким-нибудь обитателем другого небесного тела; эта премия все еще ждет счастливца. В шутку, хотя и не совсем безосновательно , было решено передать обитателям Марса сигнал в виде теоремы Пифагора.
Другие работы по теме:
Пифагор
Жизнь Пифагора. Пифагорейское учение. Мораль у Пифагора.
по теме «Пифагор и его теорема»
Авторы: ученицы 8 класса моу леботерская оош с. Леботер, Томской области, Чаинского района Макарова Надежда и Пчелкина Ирина
Теорема 15.2
Теорема 15.2. Если две точки прямой принадлежат плоскости, то вся прямая принадлежит этой плоскости. Доказательство . Пусть данная прямая и @ — данная плоскость. По аксиоме I существует точка
Проблема иррациональных чисел
Проблема иррациональности впервые обнаружена в геометрии при извлечении корня. Она известна еще в эпоху “античности”, связываемую с именем Пифагора.
Теорема Ферма. Бесконечный спуск для нечетных показателей n
Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4. Доказательство.
Пифагор 3
Бексултанова Дания Шокановна ОКШДС № 77 Г. Караганда Шокенова З.У. геометрия Пифагор. Теорема Пифагора. русский Требуется компьютер ПИФАГОР. ФИЛОСОФ И МАТЕМАТИК, ПОЛИТИК И РЕЛИГИОЗНЫЙ ЛИДЕР
Число пи четверками
Известна задача четырех четверок, в которой предлагается, записав четыре -ки и какие угодно обычные математические символы в любых количествах получить как можно более точное приближение числа .
Теорема Наполеона
Эту красивую теорему приписывают известному великому полководцу и государственному деятелю Наполеону Бонапарту. С учетом того, что Наполеон был артиллеристом, неудивительно, что он увлекался геометрией.
Формула Герона
Герон Александрийский жил во второй половине первого века нашей эры. О Героне известно довольно мало. Однако до нас дошли некоторые его труды и копии его трудов, на основании которых Герона вполне заслуженно считают величайшим инженером.
Доказательство теоремы Ферма для n 3
Доказательство великой теоремы Ферма для показателя степени n=3 Великая теорема Ферма формулируется следующим образом: диофантово уравнение: Аn+ Вn = Сn (1)
Равносоставленность и задачи на разрезание
Равносоставленность Геометрическая формулировка: Изначально теорема была сформулирована следующим образом: В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.
Тригонометрия
Действительные числа: Теорема: R - несчётное множество. Док-во: метод от противного. Несчётность (0;1) X1=0,n11n12n13…n1k… m1О{0,1,…,9}{9,n11}
Контрольные билеты по алгебре
Алгебра и начала анализа. 11 класс. Билет №1. Функция y = sin x, ее свойства и график. Показательная функция, ее свойства для случая, когда основание больше единицы (доказательство одного из свойств по желанию ученика).
Доказательство Великой теоремы Ферма для степени n 3
Файл: FERMA-n3-algo © Н. М. Козий, 2009 Украина, АС № 28607 ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ПОКАЗАТЕЛЯ СТЕПЕНИ n=3 Великая теорема Ферма для показателя степени n=3 формулируется следующим образом: диофантово уравнение:
Доказательство Великой теоремы Ферма 6
Файл: FERMA-ЛАРЧИК © Н. М. Козий, 2009 Авторские права защищены свидетельством Украины 28607 Доказательство Великой теоремы Ферма Великая теорема Ферма формулируется следующим образом: диофантово уравнение:
Доказательство теоремы Ферма для n 4
Доказательство великой теоремы Ферма для показателя степени n=4 Великая теорема Ферма формулируется следующим образом: диофантово уравнение: Аn+ Вn = Сn (1)
Алгебраическое доказательство теоремы Пифагора
Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.
Трехмерность бытия и теоремы Ферма и Пифагора
Трехмерность бытия, Великая теорема Ферма и теорема Пифагора имеют логическую взаимосвязь. Эта взаимосвязь позволяет сформулировать еще один довод в пользу того, что существует только 3-мерный мир.
Великая теорема Ферма
История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно.
Теорема Ферма Бесконечный спуск для нечетных показателей n
Терема Ферма. Бесконечный спуск для нечётных показателей Получены другие формулы для решений уравнения Пифагора x^2+y^2=z^2, отличные от формул древних индусов, и делающие возможным доказательство для всех нечётных значений показателя n тем же способом бесконечного спуска Ферма, что и для n=4.
Окружности в треугольниках и четырехугольниках
Определение вписанной и описанной окружности, их свойства и признаки. Взаимное расположение прямой и окружности. Свойства прямоугольного треугольника и теорема Пифагора. Задачи с окружностью, вписанной и описанной в треугольниках и четырехугольниках.